Desmocollin 1 and desmoglein 1 expression in human epidermis and keratinizing oral mucosa : a comparative immunohistochemical and molecular study

Epidermis and keratinizing oral mucosa (KOM) are effective barriers against a wide spectrum of insults. The optimal form of protection provided by each epithelium is determined also by the molecular composition of desmosomes. Up to now, the expression of the "skin type" desmosomal cadherin...

Full description

Saved in:
Bibliographic Details
Published inArchives of Dermatological Research Vol. 297; no. 1; pp. 31 - 38
Main Authors DONETTI, Elena, BEDONI, Marzia, BOSCHINI, Elena, DELLAVIA, Claudia, BARAJON, Isabella, GAGLIANO, Nicoletta
Format Journal Article
LanguageEnglish
Published Berlin Springer 01.07.2005
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Epidermis and keratinizing oral mucosa (KOM) are effective barriers against a wide spectrum of insults. The optimal form of protection provided by each epithelium is determined also by the molecular composition of desmosomes. Up to now, the expression of the "skin type" desmosomal cadherins, i.e. desmocollin 1 (Dsc1) and desmoglein 1 (Dsg1), was correlated with the morphological features of keratinocyte terminal differentiation in epidermis, but not in KOM. The aim of the present study was to investigate Dsc1 and Dsg1 expression in adult human KOM compared to epidermis. Biopsies of epidermis and KOM were obtained from young healthy adults (n=6) and simultaneously processed for immunofluorescence analysis, post-embedding immunogold electron microscopy (immunogold EM), and RT-PCR analysis. For molecular biology analysis, as a negative control, we considered human fibroblasts. By immunofluorescence and immunogold EM, Dsc1 labeling was not detected in any suprabasal layer of KOM, but it was present in the upper spinous/granular layers of epidermis. Immunofluorescence and transmission electron microscopy analysis showed that (i) Dsg1 expression was evident in the spinous, granular, and horny layer of the oral epithelium and (ii) Dsg1 immunoreactivity was always lower in desmosomes between oral keratinocytes than in all epidermal junctions. RT-PCR analysis confirmed that in KOM Dsc1 gene expression was undetectable. On the whole, these observations suggest a weakened adhesion in KOM, allowing oral keratinocytes to undergo a faster transition throughout the living layers of the epithelium. The intrinsic and specific regulation of the molecular composition of desmosomes can contribute in defining a specific keratinocyte phenotype in KOM and in epidermis.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0340-3696
1432-069X
DOI:10.1007/s00403-005-0573-9