Accounting for Genetic Differences Among Unknown Parents in Bubalus bubalis : A Case Study From the Italian Mediterranean Buffalo
The use of genetic evaluations in the Water Buffalo by means of a Best Linear Unbiased Prediction (BLUP) animal model has been increased over the last two-decades across several countries. However, natural mating is still a common reproductive strategy that can increase the proportion of missing ped...
Saved in:
Published in | Frontiers in genetics Vol. 12; p. 625335 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
Frontiers Media S.A
04.02.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The use of genetic evaluations in the Water Buffalo by means of a Best Linear Unbiased Prediction (BLUP) animal model has been increased over the last two-decades across several countries. However, natural mating is still a common reproductive strategy that can increase the proportion of missing pedigree information. The inclusion of genetic groups in variance component (VC) and breeding value (EBV) estimation is a possible solution. The aim of this study was to evaluate two different genetic grouping strategies and their effects on VC and EBV for composite (
= 5) and linear (
= 10) type traits in the Italian Mediterranean Buffalo (IMB) population. Type traits data from 7,714 buffalo cows plus a pedigree file including 18,831 individuals were provided by the Italian National Association of Buffalo Breeders. VCs and EBVs were estimated for each trait fitting a single-trait animal model and using the official DNA-verified pedigree. Successively, EBVs were re-estimated using modified pedigrees with two different proportion of missing genealogies (30 or 60% of buffalo with records), and two different grouping strategies, year of birth (Y30/Y60) or genetic clustering (GC30, GC60). The different set of VCs, estimated EBVs and their standard errors were compared with the results obtained using the original pedigree. Results were also compared in terms of efficiency of selection. Differences among VCs varied according to the trait and the scenario considered. The largest effect was observed for two traits, udder teat and body depth in the GC60 genetic cluster, whose heritability decreased by -0.07 and increased by +0.04, respectively. Considering buffalo cows with record, the average correlation across traits between official EBVs and EBVs from different scenarios was 0.91, 0.88, 0.84, and 0.79 for Y30, CG30, Y60, and CG60, respectively. In bulls the correlations between EBVs ranged from 0.90 for fore udder attachment and udder depth to 0.96 for stature and body length in the GC30 scenario and from 0.75 for udder depth to 0.90 for stature in the GC60 scenario. When a variable proportion of missing pedigree is present using the appropriate strategy to define genetic groups and including them in VC and EBV is a worth-while and low-demanding solution. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 Edited by: Tingxian Deng, Institute of Buffalo (CAAS), China Reviewed by: Faiz-ul Hassan, University of Agriculture, Faisalabad, Pakistan; Hossam Eldin Rushdi Ahmed Ali Osman, Cairo University, Egypt This article was submitted to Livestock Genomics, a section of the journal Frontiers in Genetics |
ISSN: | 1664-8021 1664-8021 |
DOI: | 10.3389/fgene.2021.625335 |