Isolation of Ambient Particles of Known Critical Supersaturation: The Differential Activation Separator (DAS)

A field-deployable instrument has been developed that isolates from an ambient aerosol those particles that have critical supersaturations, S c , within a narrow, user-specified, range. This Differential Activation Separator (DAS) consists of two continuous flow diffusion chambers housed within a si...

Full description

Saved in:
Bibliographic Details
Published inAerosol science and technology Vol. 42; no. 9; pp. 759 - 772
Main Authors Osborn, Robert J., Taylor, Nathan F., Spencer, Chance W., Collins, Don R.
Format Journal Article
LanguageEnglish
Published Colchester Taylor & Francis Group 01.09.2008
Taylor & Francis
Taylor & Francis Ltd
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A field-deployable instrument has been developed that isolates from an ambient aerosol those particles that have critical supersaturations, S c , within a narrow, user-specified, range. This Differential Activation Separator (DAS) consists of two continuous flow diffusion chambers housed within a single enclosure. Particles are introduced into the upstream chamber referred to as the CCN remover (CCNR) near the centerline between a warm, water-soaked, plate and a cool, continuously circulated, water bath. Those particles that activate at the resulting peak supersaturation, S p , grow quickly and fall into the water bath. The remaining aerosol enters the second chamber referred to as the CCN separator (CCNS), which differs from the CCNR primarily in the use of a salt solution in the lower bath. The imposed temperature differential establishes an S p slightly higher than that maintained in the upstream chamber, while the presence of a salt solution at the lower boundary results in a subsaturated region in roughly the lower half of the chamber. Those particles having (S p ) CCNR < S c < (S p ) CCNS activate in this chamber and begin to fall due to gravitational settling. Before reaching the lower bath, the droplets evaporate in the subsaturated environment and continue to travel towards the chamber exit. The previously activated particles in the lower half of the chamber and the unactivated particles in the upper half are extracted in separate flows that are subsequently dried. Calibration of the DAS was achieved by measuring the size distribution of separated particles when a polydisperse ammonium sulfate aerosol was introduced.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0278-6826
1521-7388
DOI:10.1080/02786820802339512