Traffic Accident Prediction Based on LSTM-GBRT Model
Road traffic accidents are a concrete manifestation of road traffic safety levels. The current traffic accident prediction has a problem of low accuracy. In order to provide traffic management departments with more accurate forecast data, it can be applied in the traffic management system to help ma...
Saved in:
Published in | Journal of control science and engineering Vol. 2020; no. 2020; pp. 1 - 10 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Cairo, Egypt
Hindawi Publishing Corporation
2020
Hindawi John Wiley & Sons, Inc Wiley |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Road traffic accidents are a concrete manifestation of road traffic safety levels. The current traffic accident prediction has a problem of low accuracy. In order to provide traffic management departments with more accurate forecast data, it can be applied in the traffic management system to help make scientific decisions. This paper establishes a traffic accident prediction model based on LSTM-GBRT (long short-term memory, gradient boosted regression trees) and predicts traffic accident safety level indicators by training traffic accident-related data. Compared with various regression models and neural network models, the experimental results show that the LSTM-GBRT model has a good fitting effect and robustness. The LSTM-GBRT model can accurately predict the safety level of traffic accidents, so that the traffic management department can better grasp the situation of traffic safety levels. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1687-5249 1687-5257 |
DOI: | 10.1155/2020/4206919 |