Modulation of Gut Microbiota to Enhance Effect of Checkpoint Inhibitor Immunotherapy

Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel treatment and has been clinically accepted as a major therapeutic strategy for cancer. Gut microbiota is related to cancer and the effec...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in immunology Vol. 12; p. 669150
Main Authors Wu, Jianmin, Wang, Shan, Zheng, Bo, Qiu, Xinyao, Wang, Hongyang, Chen, Lei
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 29.06.2021
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel treatment and has been clinically accepted as a major therapeutic strategy for cancer. Gut microbiota is related to cancer and the effect of immune checkpoint inhibitors (ICIs), and supplement with specific bacterial species can restore or enhance the responses to the ICIs. Namely, specified bacteria can serve as the biomarkers for distinguishing the patient who will respond to ICIs and determine the effectiveness of ICIs, as well as predicting the efficacy of checkpoint inhibitor immunotherapy. Regardless of the significant findings, the relationship between gut microbiota and the effect of ICIs treatment needs a more thorough understanding to provide more effective therapeutic plans and reduce treatment complication. In this review, we summarized the role of gut microbiota played in immune system and cancer. We mainly focus on the relationship between gut microbiota and the checkpoint inhibitor immunotherapy.
AbstractList Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel treatment and has been clinically accepted as a major therapeutic strategy for cancer. Gut microbiota is related to cancer and the effect of immune checkpoint inhibitors (ICIs), and supplement with specific bacterial species can restore or enhance the responses to the ICIs. Namely, specified bacteria can serve as the biomarkers for distinguishing the patient who will respond to ICIs and determine the effectiveness of ICIs, as well as predicting the efficacy of checkpoint inhibitor immunotherapy. Regardless of the significant findings, the relationship between gut microbiota and the effect of ICIs treatment needs a more thorough understanding to provide more effective therapeutic plans and reduce treatment complication. In this review, we summarized the role of gut microbiota played in immune system and cancer. We mainly focus on the relationship between gut microbiota and the checkpoint inhibitor immunotherapy.
Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel treatment and has been clinically accepted as a major therapeutic strategy for cancer. Gut microbiota is related to cancer and the effect of immune checkpoint inhibitors (ICIs), and supplement with specific bacterial species can restore or enhance the responses to the ICIs. Namely, specified bacteria can serve as the biomarkers for distinguishing the patient who will respond to ICIs and determine the effectiveness of ICIs, as well as predicting the efficacy of checkpoint inhibitor immunotherapy. Regardless of the significant findings, the relationship between gut microbiota and the effect of ICIs treatment needs a more thorough understanding to provide more effective therapeutic plans and reduce treatment complication. In this review, we summarized the role of gut microbiota played in immune system and cancer. We mainly focus on the relationship between gut microbiota and the checkpoint inhibitor immunotherapy.Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a novel treatment and has been clinically accepted as a major therapeutic strategy for cancer. Gut microbiota is related to cancer and the effect of immune checkpoint inhibitors (ICIs), and supplement with specific bacterial species can restore or enhance the responses to the ICIs. Namely, specified bacteria can serve as the biomarkers for distinguishing the patient who will respond to ICIs and determine the effectiveness of ICIs, as well as predicting the efficacy of checkpoint inhibitor immunotherapy. Regardless of the significant findings, the relationship between gut microbiota and the effect of ICIs treatment needs a more thorough understanding to provide more effective therapeutic plans and reduce treatment complication. In this review, we summarized the role of gut microbiota played in immune system and cancer. We mainly focus on the relationship between gut microbiota and the checkpoint inhibitor immunotherapy.
Author Qiu, Xinyao
Wu, Jianmin
Zheng, Bo
Wang, Hongyang
Chen, Lei
Wang, Shan
AuthorAffiliation 1 Institute of Metabolism & Integrative Biology (IMIB), Fudan University , Shanghai , China
2 Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University , Shanghai , China
3 The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University , Shanghai , China
AuthorAffiliation_xml – name: 1 Institute of Metabolism & Integrative Biology (IMIB), Fudan University , Shanghai , China
– name: 3 The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University , Shanghai , China
– name: 2 Department of Oncology, Shanghai Medical College, Fudan University Shanghai Cancer Center, Fudan University , Shanghai , China
Author_xml – sequence: 1
  givenname: Jianmin
  surname: Wu
  fullname: Wu, Jianmin
– sequence: 2
  givenname: Shan
  surname: Wang
  fullname: Wang, Shan
– sequence: 3
  givenname: Bo
  surname: Zheng
  fullname: Zheng, Bo
– sequence: 4
  givenname: Xinyao
  surname: Qiu
  fullname: Qiu, Xinyao
– sequence: 5
  givenname: Hongyang
  surname: Wang
  fullname: Wang, Hongyang
– sequence: 6
  givenname: Lei
  surname: Chen
  fullname: Chen, Lei
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34267748$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtvEzEURi1URB_0B7BBs2ST4Pdjg4SiUCK1YlPWlu2503GZ2MHjQeq_Z5K0VcsCb2xdf_fcK51zdJJyAoQ-ELxkTJvPXdxupyXFlCylNETgN-iMSMkXjFJ-8uJ9ii7H8R7PhxvGmHiHThmnUimuz9DtTW6nwdWYU5O75mqqzU0MJfuYq2tqbtapdylAs-46CHWfWfUQfu1yTLXZpD76WHNpNvMyKdceits9vEdvOzeMcPl4X6Cf39a3q--L6x9Xm9XX60XgUtSF1MZQQwPviAgaMFVGs8A5tF4JMkeY0S2mnJIgiAqtkyAU8aCFZ9rjll2gzZHbZndvdyVuXXmw2UV7KORyZ12pMQxgmeYygOfaKcI9l9oDmOB4MEzgrlUz68uRtZv8FtoAqRY3vIK-_kmxt3f5j9VUSSz3gE-PgJJ_TzBWu41jgGFwCfI0WioENVoLLefox5eznoc8aZkD5BiYTYxjge45QrDd27cH-3Zv3x7tzz3qn54Q60HsvG4c_tP5F3TNtZA
CitedBy_id crossref_primary_10_3389_fimmu_2023_1070779
crossref_primary_10_3390_microorganisms12061235
crossref_primary_10_1007_s13167_025_00403_w
crossref_primary_10_3390_cancers17050813
crossref_primary_10_3389_fimmu_2023_1150572
crossref_primary_10_3389_fimmu_2024_1292122
crossref_primary_10_1038_s41575_024_01019_7
crossref_primary_10_3389_fneph_2022_1017921
crossref_primary_10_3390_ijms222312980
crossref_primary_10_1038_s41416_022_01980_7
crossref_primary_10_3390_life12030409
crossref_primary_10_20517_mrr_2023_51
crossref_primary_10_3390_microorganisms11051240
crossref_primary_10_1038_s41467_023_41630_x
crossref_primary_10_1080_19490976_2023_2185035
crossref_primary_10_3892_ol_2024_14796
crossref_primary_10_54393_pjhs_v5i08_1904
crossref_primary_10_1080_19490976_2025_2452277
crossref_primary_10_3389_fimmu_2022_1018202
crossref_primary_10_3390_microorganisms10122382
crossref_primary_10_3389_fonc_2022_982744
crossref_primary_10_1155_2022_3610038
crossref_primary_10_3389_fimmu_2024_1505966
crossref_primary_10_3389_fgene_2022_921972
crossref_primary_10_3389_fonc_2022_847350
crossref_primary_10_11569_wcjd_v32_i9_645
crossref_primary_10_1177_15347354231178911
crossref_primary_10_3389_fnut_2023_1128432
crossref_primary_10_1080_19490976_2023_2290643
crossref_primary_10_3389_fonc_2023_1038710
crossref_primary_10_3390_cancers14153563
crossref_primary_10_3390_biomedicines10061237
crossref_primary_10_1080_19490976_2022_2127455
crossref_primary_10_1002_cnr2_1947
crossref_primary_10_1136_bmjopen_2024_094366
crossref_primary_10_3389_fimmu_2022_952546
crossref_primary_10_3390_cancers14246250
crossref_primary_10_1515_oncologie_2023_0412
crossref_primary_10_3390_cancers16010133
Cites_doi 10.1126/science.aac4255
10.1126/science.aan3706
10.1053/j.gastro.2017.08.022
10.1126/science.1198469
10.1038/nature12347
10.1126/science.abb5920
10.1126/science.abf3363
10.1016/j.transproceed.2016.01.077
10.1038/s41591-018-0238-9
10.1016/j.eururo.2020.07.011
10.3390/ijms19051389
10.1096/fasebj.29.1_supplement.914.2
10.1016/j.ccell.2020.09.005
10.1038/s41586-020-2080-8
10.1126/science.aaq0926
10.1186/s40425-019-0650-9
10.1097/00003086-199101000-00002
10.1038/nature11465
10.1073/pnas.1010203108
10.1016/j.ejca.2020.07.026
10.1084/jem.20192282
10.1002/ijc.26193
10.1016/j.ccell.2018.03.015
10.3389/fimmu.2019.00277
10.1038/nrc2857
10.1007/s10689-014-9742-3
10.1038/nrmicro.2017.44
10.1038/s41385-019-0160-6
10.1016/j.ebiom.2016.04.034
10.1152/ajpgi.00065.2015
10.1038/nm.2015
10.1056/NEJMra1001683
10.1515/cclm-2019-0605
10.1126/science.aad1329
10.1053/j.gastro.2006.01.038
10.1038/nature18847
10.1038/nature12331
10.1126/science.1206095
10.1186/s40168-018-0451-2
10.1016/j.eururo.2020.04.044
10.1126/science.aaa4972
10.1073/pnas.0909122107
10.1093/carcin/bgw019
10.1001/jama.291.2.187
10.1016/j.ccr.2012.02.007
10.3748/wjg.v16.i2.167
10.1038/nature12820
10.1055/s-0030-1255353
10.2217/fmb.15.66
10.1158/1538-7445.Am2019-2838
10.3390/microorganisms8101587
10.1016/j.jhep.2019.08.016
10.1038/nmicrobiol.2016.140
10.1016/j.cell.2009.09.033
10.1016/j.immuni.2013.12.007
10.1158/2326-6066.CIR-13-0101
10.1038/nature08821
10.1016/j.cell.2015.07.045
10.1371/journal.pone.0016221
10.1016/j.ccell.2018.03.004
10.1128/JB.00454-20
10.1016/j.chom.2015.10.007
10.1126/science.aau6323
10.1038/nature12726
10.1152/ajpgi.00110.2011
10.1038/nrg3182
10.1126/science.aaw2367
10.1080/01635581.2017.1263750
10.1056/NEJMoa1200690
10.1126/science.aan5931
10.1126/science.aar4060
10.1038/nmicrobiol.2016.103
10.1371/journal.pone.0062617
10.1016/j.cell.2018.12.040
10.1038/nature18848
10.1038/nature12721
10.1126/scitranslmed.aav1892
10.1016/j.cell.2018.08.047
10.1038/nri3112
10.3390/ijms20112674
10.1158/1940-6207.CAPR-10-0215
10.1158/2159-8290.CD-16-0932
10.1038/nature11234
10.1126/science.aan4236
10.1158/2326-6066.CIR-19-1014
10.1158/2326-6066.CIR-20-0196
10.1126/science.aao3290
10.1126/science.abc3421
ContentType Journal Article
Copyright Copyright © 2021 Wu, Wang, Zheng, Qiu, Wang and Chen.
Copyright © 2021 Wu, Wang, Zheng, Qiu, Wang and Chen 2021 Wu, Wang, Zheng, Qiu, Wang and Chen
Copyright_xml – notice: Copyright © 2021 Wu, Wang, Zheng, Qiu, Wang and Chen.
– notice: Copyright © 2021 Wu, Wang, Zheng, Qiu, Wang and Chen 2021 Wu, Wang, Zheng, Qiu, Wang and Chen
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOA
DOI 10.3389/fimmu.2021.669150
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE - Academic

MEDLINE
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1664-3224
ExternalDocumentID oai_doaj_org_article_3846ceb48a714b468bee9ca4c9350fd7
PMC8276067
34267748
10_3389_fimmu_2021_669150
Genre Research Support, Non-U.S. Gov't
Journal Article
Review
GroupedDBID 53G
5VS
9T4
AAFWJ
AAKDD
AAYXX
ACGFO
ACGFS
ACXDI
ADBBV
ADRAZ
AENEX
AFPKN
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BAWUL
BCNDV
CITATION
DIK
EBS
EMOBN
GROUPED_DOAJ
GX1
HYE
KQ8
M48
M~E
OK1
PGMZT
RNS
RPM
CGR
CUY
CVF
ECM
EIF
IAO
IEA
IHR
IHW
IPNFZ
NPM
RIG
7X8
5PM
ID FETCH-LOGICAL-c465t-6899292c4f15c8e027983c44edb751465398d02421c517cda6e571be85b38b0d3
IEDL.DBID M48
ISSN 1664-3224
IngestDate Wed Aug 27 01:30:26 EDT 2025
Thu Aug 21 18:35:42 EDT 2025
Thu Jul 10 19:32:14 EDT 2025
Thu Jan 02 22:44:41 EST 2025
Tue Jul 01 00:53:05 EDT 2025
Thu Apr 24 23:02:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords cancer treatment
immune checkpoint inhibitor
CTLA-4
PD-1
tumor
tumor immunotherapy
Language English
License Copyright © 2021 Wu, Wang, Zheng, Qiu, Wang and Chen.
This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c465t-6899292c4f15c8e027983c44edb751465398d02421c517cda6e571be85b38b0d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
Edited by: Alexandr Bazhin, LMU Munich University Hospital, Germany
Reviewed by: Ming Yi, Huazhong University of Science and Technology, China; Chiao-En Wu, Linkou Chang Gung Memorial Hospital, Taiwan; Meriem Messaoudene, University of Montreal Hospital Centre (CRCHUM), Canada
This article was submitted to Cancer Immunity and Immunotherapy, a section of the journal Frontiers in Immunology
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3389/fimmu.2021.669150
PMID 34267748
PQID 2552988586
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_3846ceb48a714b468bee9ca4c9350fd7
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8276067
proquest_miscellaneous_2552988586
pubmed_primary_34267748
crossref_primary_10_3389_fimmu_2021_669150
crossref_citationtrail_10_3389_fimmu_2021_669150
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-06-29
PublicationDateYYYYMMDD 2021-06-29
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-29
  day: 29
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Frontiers in immunology
PublicationTitleAlternate Front Immunol
PublicationYear 2021
Publisher Frontiers Media S.A
Publisher_xml – name: Frontiers Media S.A
References Qin (B1) 2010; 464
Wong (B42) 2017; 153
Grat (B50) 2016; 48
Schwabe (B47) 2006; 130
Dapito (B45) 2012; 21
Loo (B65) 2017; 7
Furusawa (B32) 2013; 504
Dai (B41) 2018; 6
Jin (B8) 2019; 176
Bard (B53) 2015; 29
Grivennikov (B57) 2012; 491
Parada Venegas (B30) 2019; 10
Pradere (B48) 2010; 30
Virtue (B5) 2019; 11
Yoshimoto (B46) 2013; 499
Mager (B68) 2020; 369
Suez (B81) 2018; 174
Lee (B84) 2020; 138
Wolchok (B14) 2015; 162
Ribas (B13) 2018; 359
Luu (B54) 2017; 69
Coley (B76) 1991
Konieczna (B35) 2013; 8
Azcarate-Peril (B61) 2011; 301
Routy (B20) 2018; 359
Yoo (B31) 2020; 8
Sivan (B18) 2015; 350
Pleguezuelos-Manzano (B44) 2020; 580
Dang (B55) 2019; 12
Arpaia (B33) 2013; 504
Hakozaki (B74) 2020; 8
Ma (B66) 2018; 360
Peng (B69) 2020; 8
Frelaut (B16) 2019; 20
Cho (B2) 2012; 13
Garrett (B11) 2015; 348
El-Serag (B49) 2011; 365
Garrett (B39) 2019; 364
Vetizou (B19) 2015; 350
Janket (B80) 2019; 58
Tilg (B9) 2018; 33
Topalian (B15) 2012; 366
Derosa (B75) 2020; 78
Zheng (B73) 2019; 7
Honda (B25) 2016; 535
Round (B37) 2011; 332
Salgia (B72) 2020; 78
Ivanov (B27) 2009; 139
Wong (B40) 2004; 291
Wu (B43) 2009; 15
Zhou (B56) 2020; 203
Gopalakrishnan (B22) 2018; 33
Goodwin (B62) 2011; 108
Donaldson (B26) 2018; 360
Matson (B70) 2018; 359
Gianotti (B78) 2010; 16
Davar (B87) 2021; 371
Livanos (B6) 2016; 1
Johansson (B23) 2015; 18
Round (B36) 2010; 107
Limburg (B85) 2011; 4
Atarashi (B29) 2013; 500
Chen (B77) 2015; 10
Shi (B71) 2020; 217
Hu (B59) 2016; 37
Renz (B3) 2011; 12
Okai (B24) 2016; 1
Spencer (B82) 2019; 79
Shi (B12) 2018; 19
Kostic (B58) 2013; 1
Hu (B60) 2011; 6
Polk (B38) 2010; 10
Schwabe (B51) 2020; 72
Cao (B64) 2014; 13
Zitvogel (B10) 2017; 15
Maini Rekdal (B7) 2019; 364
Baruch (B88) 2021; 371
Wang (B86) 2018; 24
Gopalakrishnan (B17) 2018; 359
Allen-Vercoe (B67) 2020; 38
David (B83) 2014; 505
Dossa (B63) 2016; 310
Atarashi (B28) 2011; 331
Pala (B79) 2011; 129
Human Microbiome Project (B4) 2012; 486
Chng (B52) 2016; 8
Thaiss (B21) 2016; 535
Singh (B34) 2014; 40
References_xml – volume: 350
  year: 2015
  ident: B18
  article-title: Commensal Bifidobacterium Promotes Antitumor Immunity and Facilitates Anti-PD-L1 Efficacy
  publication-title: Science
  doi: 10.1126/science.aac4255
– volume: 359
  year: 2018
  ident: B20
  article-title: Gut Microbiome Influences Efficacy of PD-1-based Immunotherapy Against Epithelial Tumors
  publication-title: Science
  doi: 10.1126/science.aan3706
– volume: 153
  start-page: 1621
  year: 2017
  ident: B42
  article-title: Gavage of Fecal Samples From Patients With Colorectal Cancer Promotes Intestinal Carcinogenesis in Germ-Free and Conventional Mice
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2017.08.022
– volume: 331
  year: 2011
  ident: B28
  article-title: Induction of Colonic Regulatory T Cells by Indigenous Clostridium Species
  publication-title: Science
  doi: 10.1126/science.1198469
– volume: 499
  start-page: 97
  year: 2013
  ident: B46
  article-title: Obesity-Induced Gut Microbial Metabolite Promotes Liver Cancer Through Senescence Secretome
  publication-title: Nature
  doi: 10.1038/nature12347
– volume: 371
  year: 2021
  ident: B88
  article-title: Fecal Microbiota Transplant Promotes Response in Immunotherapy-Refractory Melanoma Patients
  publication-title: Science
  doi: 10.1126/science.abb5920
– volume: 371
  start-page: 595
  year: 2021
  ident: B87
  article-title: Fecal Microbiota Transplant Overcomes Resistance to Anti-PD-1 Therapy in Melanoma Patients
  publication-title: Science
  doi: 10.1126/science.abf3363
– volume: 48
  year: 2016
  ident: B50
  article-title: Profile of Gut Microbiota Associated With the Presence of Hepatocellular Cancer in Patients With Liver Cirrhosis
  publication-title: Transplant Proc
  doi: 10.1016/j.transproceed.2016.01.077
– volume: 24
  year: 2018
  ident: B86
  article-title: Fecal Microbiota Transplantation for Refractory Immune Checkpoint Inhibitor-Associated Colitis
  publication-title: Nat Med
  doi: 10.1038/s41591-018-0238-9
– volume: 78
  start-page: 498
  year: 2020
  ident: B72
  article-title: Stool Microbiome Profiling of Patients With Metastatic Renal Cell Carcinoma Receiving Anti-Pd-1 Immune Checkpoint Inhibitors
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2020.07.011
– volume: 19
  year: 2018
  ident: B12
  article-title: Cancer Immunotherapy: A Focus on the Regulation of Immune Checkpoints
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms19051389
– volume: 29
  year: 2015
  ident: B53
  article-title: Relationship Between Intestinal Microbiota and Clinical Characteristics of Patients With Early Stage Breast Cancer
  publication-title: FASEB J
  doi: 10.1096/fasebj.29.1_supplement.914.2
– volume: 38
  year: 2020
  ident: B67
  article-title: A Microbiota-Derived Metabolite Augments Cancer Immunotherapy Responses in Mice
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2020.09.005
– volume: 580
  year: 2020
  ident: B44
  article-title: Mutational Signature in Colorectal Cancer Caused by Genotoxic Pks(+) E. Coli
  publication-title: Nature
  doi: 10.1038/s41586-020-2080-8
– volume: 360
  start-page: 795
  year: 2018
  ident: B26
  article-title: Gut Microbiota Utilize Immunoglobulin A for Mucosal Colonization
  publication-title: Science
  doi: 10.1126/science.aaq0926
– volume: 7
  start-page: 193
  year: 2019
  ident: B73
  article-title: Gut Microbiome Affects the Response to anti-PD-1 Immunotherapy in Patients With Hepatocellular Carcinoma
  publication-title: J Immunother Cancer
  doi: 10.1186/s40425-019-0650-9
– start-page: 3
  year: 1991
  ident: B76
  article-title: The Classic - the Treatment of Malignant-Tumors by Repeated Inoculations of Erysipelas - With a Report of 10 Original Cases
  publication-title: Clin Orthop Relat R
  doi: 10.1097/00003086-199101000-00002
– volume: 491
  year: 2012
  ident: B57
  article-title: Adenoma-Linked Barrier Defects and Microbial Products Drive IL-23/IL-17-mediated Tumour Growth
  publication-title: Nature
  doi: 10.1038/nature11465
– volume: 108
  year: 2011
  ident: B62
  article-title: Polyamine Catabolism Contributes to Enterotoxigenic Bacteroides Fragilis-Induced Colon Tumorigenesis
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.1010203108
– volume: 138
  year: 2020
  ident: B84
  article-title: Role of the Gut Microbiome for Cancer Patients Receiving Immunotherapy: Dietary and Treatment Implications
  publication-title: Eur J Cancer
  doi: 10.1016/j.ejca.2020.07.026
– volume: 217
  year: 2020
  ident: B71
  article-title: Intratumoral Accumulation of Gut Microbiota Facilitates CD47-Based Immunotherapy Via STING Signaling
  publication-title: J Exp Med
  doi: 10.1084/jem.20192282
– volume: 129
  year: 2011
  ident: B79
  article-title: Yogurt Consumption and Risk of Colorectal Cancer in the Italian European Prospective Investigation Into Cancer and Nutrition Cohort
  publication-title: Int J Cancer
  doi: 10.1002/ijc.26193
– volume: 33
  year: 2018
  ident: B22
  article-title: The Influence of the Gut Microbiome on Cancer, Immunity, and Cancer Immunotherapy
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.015
– volume: 10
  year: 2019
  ident: B30
  article-title: Short Chain Fatty Acids (Scfas)-Mediated Gut Epithelial and Immune Regulation and Its Relevance for Inflammatory Bowel Diseases
  publication-title: Front Immunol
  doi: 10.3389/fimmu.2019.00277
– volume: 10
  year: 2010
  ident: B38
  article-title: Helicobacter Pylori: Gastric Cancer and Beyond
  publication-title: Nat Rev Cancer
  doi: 10.1038/nrc2857
– volume: 13
  year: 2014
  ident: B64
  article-title: The Secondary Bile Acid, Deoxycholate Accelerates Intestinal Adenoma-Adenocarcinoma Sequence in Apc (Min/+) Mice Through Enhancing Wnt Signaling
  publication-title: Fam Cancer
  doi: 10.1007/s10689-014-9742-3
– volume: 15
  year: 2017
  ident: B10
  article-title: Anticancer Effects of the Microbiome and Its Products
  publication-title: Nat Rev Microbiol
  doi: 10.1038/nrmicro.2017.44
– volume: 12
  year: 2019
  ident: B55
  article-title: Microbes, Metabolites, and the Gut-Lung Axis
  publication-title: Mucosal Immunol
  doi: 10.1038/s41385-019-0160-6
– volume: 8
  start-page: 195
  year: 2016
  ident: B52
  article-title: Tissue Microbiome Profiling Identifies an Enrichment of Specific Enteric Bacteria in Opisthorchis Viverrini Associated Cholangiocarcinoma
  publication-title: EBioMedicine
  doi: 10.1016/j.ebiom.2016.04.034
– volume: 310
  year: 2016
  ident: B63
  article-title: Bile Acids Regulate Intestinal Cell Proliferation by Modulating EGFR and FXR Signaling
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00065.2015
– volume: 15
  year: 2009
  ident: B43
  article-title: A Human Colonic Commensal Promotes Colon Tumorigenesis Via Activation of T Helper Type 17 T Cell Responses
  publication-title: Nat Med
  doi: 10.1038/nm.2015
– volume: 365
  year: 2011
  ident: B49
  article-title: Hepatocellular Carcinoma
  publication-title: N Engl J Med
  doi: 10.1056/NEJMra1001683
– volume: 58
  start-page: 18
  year: 2019
  ident: B80
  article-title: Gut Microbiotas and Immune Checkpoint Inhibitor Therapy Response: A Causal or Coincidental Relationship
  publication-title: Clin Chem Lab Med
  doi: 10.1515/cclm-2019-0605
– volume: 350
  year: 2015
  ident: B19
  article-title: Anticancer Immunotherapy by CTLA-4 Blockade Relies on the Gut Microbiota
  publication-title: Science
  doi: 10.1126/science.aad1329
– volume: 130
  year: 2006
  ident: B47
  article-title: Toll-Like Receptor Signaling in the Liver
  publication-title: Gastroenterology
  doi: 10.1053/j.gastro.2006.01.038
– volume: 535
  start-page: 65
  year: 2016
  ident: B21
  article-title: The Microbiome and Innate Immunity
  publication-title: Nature
  doi: 10.1038/nature18847
– volume: 500
  year: 2013
  ident: B29
  article-title: Treg Induction by a Rationally Selected Mixture of Clostridia Strains From the Human Microbiota
  publication-title: Nature
  doi: 10.1038/nature12331
– volume: 332
  year: 2011
  ident: B37
  article-title: The Toll-like Receptor 2 Pathway Establishes Colonization by a Commensal of the Human Microbiota
  publication-title: Science
  doi: 10.1126/science.1206095
– volume: 6
  start-page: 70
  year: 2018
  ident: B41
  article-title: Multi-Cohort Analysis of Colorectal Cancer Metagenome Identified Altered Bacteria Across Populations and Universal Bacterial Markers
  publication-title: Microbiome
  doi: 10.1186/s40168-018-0451-2
– volume: 78
  start-page: 195
  year: 2020
  ident: B75
  article-title: Gut Bacteria Composition Drives Primary Resistance to Cancer Immunotherapy in Renal Cell Carcinoma Patients
  publication-title: Eur Urol
  doi: 10.1016/j.eururo.2020.04.044
– volume: 348
  year: 2015
  ident: B11
  article-title: Cancer and the Microbiota
  publication-title: Science
  doi: 10.1126/science.aaa4972
– volume: 107
  year: 2010
  ident: B36
  article-title: Inducible Foxp3+ Regulatory T-cell Development by a Commensal Bacterium of the Intestinal Microbiota
  publication-title: Proc Natl Acad Sci USA
  doi: 10.1073/pnas.0909122107
– volume: 37
  year: 2016
  ident: B59
  article-title: Manipulation of the Gut Microbiota Using Resistant Starch is Associated With Protection Against Colitis-Associated Colorectal Cancer in Rats
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgw019
– volume: 291
  year: 2004
  ident: B40
  article-title: Helicobacter Pylori Eradication to Prevent Gastric Cancer in a High-Risk Region of China: A Randomized Controlled Trial
  publication-title: JAMA
  doi: 10.1001/jama.291.2.187
– volume: 21
  year: 2012
  ident: B45
  article-title: Promotion of Hepatocellular Carcinoma by the Intestinal Microbiota and TLR4
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2012.02.007
– volume: 16
  year: 2010
  ident: B78
  article-title: A Randomized Double-Blind Trial on Perioperative Administration of Probiotics in Colorectal Cancer Patients
  publication-title: World J Gastroenterol
  doi: 10.3748/wjg.v16.i2.167
– volume: 505
  year: 2014
  ident: B83
  article-title: Diet Rapidly and Reproducibly Alters the Human Gut Microbiome
  publication-title: Nature
  doi: 10.1038/nature12820
– volume: 30
  year: 2010
  ident: B48
  article-title: Toll-Like Receptor 4 and Hepatic Fibrogenesis
  publication-title: Semin Liver Dis
  doi: 10.1055/s-0030-1255353
– volume: 10
  year: 2015
  ident: B77
  article-title: Probiotics Clostridium Butyricum and Bacillus Subtilis Ameliorate Intestinal Tumorigenesis
  publication-title: Future Microbiol
  doi: 10.2217/fmb.15.66
– volume: 79
  year: 2019
  ident: B82
  article-title: Abstract 2838: The Gut Microbiome (GM) and Immunotherapy Response Are Influenced by Host Lifestyle Factors
  publication-title: Cancer Res
  doi: 10.1158/1538-7445.Am2019-2838
– volume: 8
  year: 2020
  ident: B31
  article-title: Gut Microbiota and Immune System Interactions
  publication-title: Microorganisms
  doi: 10.3390/microorganisms8101587
– volume: 72
  year: 2020
  ident: B51
  article-title: Gut Microbiome in HCC - Mechanisms, Diagnosis and Therapy
  publication-title: J hepatol
  doi: 10.1016/j.jhep.2019.08.016
– volume: 1
  start-page: 16140
  year: 2016
  ident: B6
  article-title: Antibiotic-Mediated Gut Microbiome Perturbation Accelerates Development of Type 1 Diabetes in Mice
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.140
– volume: 139
  year: 2009
  ident: B27
  article-title: Induction of Intestinal Th17 Cells by Segmented Filamentous Bacteria
  publication-title: Cell
  doi: 10.1016/j.cell.2009.09.033
– volume: 40
  year: 2014
  ident: B34
  article-title: Activation of Gpr109a, Receptor for Niacin and the Commensal Metabolite Butyrate, Suppresses Colonic Inflammation and Carcinogenesis
  publication-title: Immunity
  doi: 10.1016/j.immuni.2013.12.007
– volume: 1
  year: 2013
  ident: B58
  article-title: Microbes and Inflammation in Colorectal Cancer
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-13-0101
– volume: 464
  start-page: 59
  year: 2010
  ident: B1
  article-title: A Human Gut Microbial Gene Catalogue Established by Metagenomic Sequencing
  publication-title: Nature
  doi: 10.1038/nature08821
– volume: 162
  start-page: 937
  year: 2015
  ident: B14
  article-title: Pd-1 Blockers
  publication-title: Cell
  doi: 10.1016/j.cell.2015.07.045
– volume: 6
  year: 2011
  ident: B60
  article-title: The Microbe-Derived Short Chain Fatty Acid Butyrate Targets miRNA-dependent p21 Gene Expression in Human Colon Cancer
  publication-title: PloS One
  doi: 10.1371/journal.pone.0016221
– volume: 33
  year: 2018
  ident: B9
  article-title: The Intestinal Microbiota in Colorectal Cancer
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2018.03.004
– volume: 203
  year: 2020
  ident: B56
  article-title: Gut Microbiota: The Emerging Link to Lung Homeostasis and Disease
  publication-title: J Bacteriol
  doi: 10.1128/JB.00454-20
– volume: 18
  year: 2015
  ident: B23
  article-title: Normalization of Host Intestinal Mucus Layers Requires Long-Term Microbial Colonization
  publication-title: Cell Host Microbe
  doi: 10.1016/j.chom.2015.10.007
– volume: 364
  year: 2019
  ident: B7
  article-title: Discovery and Inhibition of an Interspecies Gut Bacterial Pathway for Levodopa Metabolism
  publication-title: Science
  doi: 10.1126/science.aau6323
– volume: 504
  year: 2013
  ident: B33
  article-title: Metabolites Produced by Commensal Bacteria Promote Peripheral Regulatory T-cell Generation
  publication-title: Nature
  doi: 10.1038/nature12726
– volume: 301
  year: 2011
  ident: B61
  article-title: The Intestinal Microbiota, Gastrointestinal Environment and Colorectal Cancer: A Putative Role for Probiotics in Prevention of Colorectal Cancer
  publication-title: Am J Physiol Gastrointest Liver Physiol
  doi: 10.1152/ajpgi.00110.2011
– volume: 13
  year: 2012
  ident: B2
  article-title: The Human Microbiome: At the Interface of Health and Disease
  publication-title: Nat Rev Genet
  doi: 10.1038/nrg3182
– volume: 364
  year: 2019
  ident: B39
  article-title: The Gut Microbiota and Colon Cancer
  publication-title: Science
  doi: 10.1126/science.aaw2367
– volume: 69
  year: 2017
  ident: B54
  article-title: Intestinal Proportion of Blautia Sp. Is Associated With Clinical Stage and Histoprognostic Grade in Patients With Early-Stage Breast Cancer
  publication-title: Nutr Cancer
  doi: 10.1080/01635581.2017.1263750
– volume: 366
  year: 2012
  ident: B15
  article-title: Safety, Activity, and Immune Correlates of Anti-PD-1 Antibody in Cancer
  publication-title: N Engl J Med
  doi: 10.1056/NEJMoa1200690
– volume: 360
  year: 2018
  ident: B66
  article-title: Gut Microbiome-Mediated Bile Acid Metabolism Regulates Liver Cancer Via NKT Cells
  publication-title: Science
  doi: 10.1126/science.aan5931
– volume: 359
  year: 2018
  ident: B13
  article-title: Cancer Immunotherapy Using Checkpoint Blockade
  publication-title: Science
  doi: 10.1126/science.aar4060
– volume: 1
  start-page: 16103
  year: 2016
  ident: B24
  article-title: High-Affinity Monoclonal IgA Regulates Gut Microbiota and Prevents Colitis in Mice
  publication-title: Nat Microbiol
  doi: 10.1038/nmicrobiol.2016.103
– volume: 8
  year: 2013
  ident: B35
  article-title: Immunomodulation by Bifidobacterium Infantis 35624 in the Murine Lamina Propria Requires Retinoic Acid-Dependent and Independent Mechanisms
  publication-title: PloS One
  doi: 10.1371/journal.pone.0062617
– volume: 176
  start-page: 998
  year: 2019
  ident: B8
  article-title: Commensal Microbiota Promote Lung Cancer Development Via Gammadelta T Cells
  publication-title: Cell
  doi: 10.1016/j.cell.2018.12.040
– volume: 535
  start-page: 75
  year: 2016
  ident: B25
  article-title: The Microbiota in Adaptive Immune Homeostasis and Disease
  publication-title: Nature
  doi: 10.1038/nature18848
– volume: 504
  year: 2013
  ident: B32
  article-title: Commensal Microbe-Derived Butyrate Induces the Differentiation of Colonic Regulatory T Cells
  publication-title: Nature
  doi: 10.1038/nature12721
– volume: 11
  year: 2019
  ident: B5
  article-title: The Gut Microbiota Regulates White Adipose Tissue Inflammation and Obesity Via a Family of MicroRNAS
  publication-title: Sci Transl Med
  doi: 10.1126/scitranslmed.aav1892
– volume: 174
  year: 2018
  ident: B81
  article-title: Post-Antibiotic Gut Mucosal Microbiome Reconstitution Is Impaired by Probiotics and Improved by Autologous Fmt
  publication-title: Cell
  doi: 10.1016/j.cell.2018.08.047
– volume: 12
  start-page: 9
  year: 2011
  ident: B3
  article-title: The Impact of Perinatal Immune Development on Mucosal Homeostasis and Chronic Inflammation
  publication-title: Nat Rev Immunol
  doi: 10.1038/nri3112
– volume: 20
  year: 2019
  ident: B16
  article-title: Hyperprogression Under Immunotherapy
  publication-title: Int J Mol Sci
  doi: 10.3390/ijms20112674
– volume: 4
  year: 2011
  ident: B85
  article-title: Randomized Phase II Trial of Sulindac, Atorvastatin, and Prebiotic Dietary Fiber for Colorectal Cancer Chemoprevention
  publication-title: Cancer Prev Res (Phila)
  doi: 10.1158/1940-6207.CAPR-10-0215
– volume: 7
  year: 2017
  ident: B65
  article-title: Gut Microbiota Promotes Obesity-Associated Liver Cancer Through PGE2-Mediated Suppression of Antitumor Immunity
  publication-title: Cancer Discovery
  doi: 10.1158/2159-8290.CD-16-0932
– volume: 486
  year: 2012
  ident: B4
  article-title: Structure, Function and Diversity of the Healthy Human Microbiome
  publication-title: Nature
  doi: 10.1038/nature11234
– volume: 359
  start-page: 97
  year: 2018
  ident: B17
  article-title: Gut Microbiome Modulates Response to Anti-PD-1 Immunotherapy in Melanoma Patients
  publication-title: Science
  doi: 10.1126/science.aan4236
– volume: 8
  year: 2020
  ident: B69
  article-title: The Gut Microbiome Is Associated With Clinical Response to Anti-PD-1/PD-L1 Immunotherapy in Gastrointestinal Cancer
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-19-1014
– volume: 8
  year: 2020
  ident: B74
  article-title: The Gut Microbiome Associates With Immune Checkpoint Inhibition Outcomes in Patients With Advanced Non-Small Cell Lung Cancer
  publication-title: Cancer Immunol Res
  doi: 10.1158/2326-6066.CIR-20-0196
– volume: 359
  year: 2018
  ident: B70
  article-title: The Commensal Microbiome is Associated With Anti-PD-1 Efficacy in Metastatic Melanoma Patients
  publication-title: Sci (New York NY)
  doi: 10.1126/science.aao3290
– volume: 369
  year: 2020
  ident: B68
  article-title: Microbiome-Derived Inosine Modulates Response to Checkpoint Inhibitor Immunotherapy
  publication-title: Science
  doi: 10.1126/science.abc3421
SSID ssj0000493335
Score 2.48159
SecondaryResourceType review_article
Snippet Accumulating evidence demonstrated the crucial role of gut microbiota in many human diseases, including cancer. Checkpoint inhibitor therapy has emerged as a...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 669150
SubjectTerms Adaptive Immunity
Animals
Bacteria - immunology
cancer treatment
CTLA-4
Dysbiosis
Fecal Microbiota Transplantation
Gastrointestinal Microbiome - immunology
Host-Pathogen Interactions
Humans
immune checkpoint inhibitor
Immune Checkpoint Inhibitors - therapeutic use
Immunity, Innate
Immunology
Immunotherapy
Neoplasms - diet therapy
Neoplasms - drug therapy
Neoplasms - immunology
Neoplasms - microbiology
PD-1
Probiotics - therapeutic use
Treatment Outcome
tumor
tumor immunotherapy
Tumor Microenvironment - immunology
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYQEhIX1AelaSlypZ4qBZJ4_Dq2CAqVlhNI3Kz4EW3akiCaPfDvGcdhtYsQvfSa2LL1zVgzn-z5hpAvwkkIDs-3rRqfQyNFrsDLXNtGgsKAUI46s7MLcXYFP6_59Uqrr_gmLMkDJ-COGAZIFyyoWpZgQSgbgnY1OM140fixjhxj3gqZ-pXyXsYYT9eYyML0UdPe3CyQD1bloRC6jHX2K4Fo1Ot_Lsl8-lZyJficviI7U9ZIv6XdviYboXtDtlIfyfu35HLW-6kNF-0b-mMx0FmbFJaGmg49Penm0bo0aRXHMcfz4H7f9m030PNu3lo82Hf0PBaLTCVZ97vk6vTk8vgsn9ol5A4EH3KB1KnSlYOm5E4F5JtaMQcQvJWYFkUNWuVjSC4dL6XztQhcljYobpmyhWfvyGbXd-E9oUWlkfaB5SAdeG6tK6yqIYhg6xqXyUjxiJ1xk5Z4bGnxxyCniHCbEW4T4TYJ7ox8XU65TUIaLw3-Hg2yHBg1sMcP6Blm8gzzL8_IyOdHcxo8M_EipO5Cv_hrkEZVWimuREb2knmXSzFMWTAlVhmRa4Zf28v6n66dj7rcqpJIB-WH_7H5j2Q74hEfpVV6n2wOd4vwCdOfwR6Mnv4A7uAD0Q
  priority: 102
  providerName: Directory of Open Access Journals
Title Modulation of Gut Microbiota to Enhance Effect of Checkpoint Inhibitor Immunotherapy
URI https://www.ncbi.nlm.nih.gov/pubmed/34267748
https://www.proquest.com/docview/2552988586
https://pubmed.ncbi.nlm.nih.gov/PMC8276067
https://doaj.org/article/3846ceb48a714b468bee9ca4c9350fd7
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Li9RAEG6WFcGL-DauLi14ErLmUf06iOiyL2E87cDcmvQjTnQ32Z3NgPPvrU5nBkcGwUsgSSedVHVR35fufEXIO24FeIvxbYrapVALnkpwIlWmFiAxIeSDzuzkGz-fwtcZm-2RdXmr0YB3O6ldqCc1XVwd_bpdfcKA_xgYJ-bbD3Vzfb1EqlfkR5yrgcHfw8QkQkGDyYj2f0QwXJZDyc2cc0hxKEOc59x9l61MNQj670Khfy-m_CM7nT4iD0dYST_HcfCY7Pn2CbkfC02unpLLSefGOl20q-nZsqeTJkow9RXtO3rSzoP7aRQzDm2O597-vOmatqcX7bwxGPkLehH-Jhn_2Vo9I9PTk8vj83Ssp5Ba4KxPOXKrQhUW6pxZ6ZGQKllaAO-MQNwURGqlCzk7tywX1lXcM5EbL5kppclc-Zzst13rXxKaFQp5IRgGwoJjxtjMyAo896aqsJuEZGvbaTuKjYeaF1caSUcwtx7MrYO5dTR3Qt5vLrmJShv_avwlOGTTMIhkDwe6xXc9xpwuEVtZb0BWIgcDXBrvla3AqpJltRMJebt2p8agCjMlVeu75Z1GnlUoKZnkCXkR3bvpqkRMg5hZJkRsOX7rWbbPtM18EO6WhUC-KF79z5sekAdhL6xOK9Rrst8vlv4N4qDeHA7fD3B7NssPh5H-G6CyBrM
linkProvider Scholars Portal
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modulation+of+Gut+Microbiota+to+Enhance+Effect+of+Checkpoint+Inhibitor+Immunotherapy&rft.jtitle=Frontiers+in+immunology&rft.au=Wu%2C+Jianmin&rft.au=Wang%2C+Shan&rft.au=Zheng%2C+Bo&rft.au=Qiu%2C+Xinyao&rft.date=2021-06-29&rft.issn=1664-3224&rft.eissn=1664-3224&rft.volume=12&rft_id=info:doi/10.3389%2Ffimmu.2021.669150&rft.externalDBID=n%2Fa&rft.externalDocID=10_3389_fimmu_2021_669150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1664-3224&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1664-3224&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1664-3224&client=summon