Kurarinol, tyrosinase inhibitor isolated from the root of Sophora flavescens

It is well known that flavanones, sophoraflavanone G 1, kurarinone 2, and kurarinol 3, from the root of Sophora flavescens, have extremely strong tyrosinase inhibitory activity. This study delineates the principal pharmacological features of kurarinol 3 that lead to inhibition of the oxidation of l-...

Full description

Saved in:
Bibliographic Details
Published inPhytomedicine (Stuttgart) Vol. 15; no. 8; pp. 612 - 618
Main Authors Ryu, Y.B., Westwood, I.M., Kang, N.S., Kim, H.Y., Kim, J.H., Moon, Y.H., Park, K.H.
Format Journal Article
LanguageEnglish
Published Germany Elsevier GmbH 01.08.2008
Urban & Fischer Verlag
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:It is well known that flavanones, sophoraflavanone G 1, kurarinone 2, and kurarinol 3, from the root of Sophora flavescens, have extremely strong tyrosinase inhibitory activity. This study delineates the principal pharmacological features of kurarinol 3 that lead to inhibition of the oxidation of l-tyrosine to melanin by mushroom tyrosinase (IC 50 of 100 nM). The inhibition kinetics analyses unveil that compounds 1 and 2 are noncompetitive inhibitors. However similar analysis shows kurarinol 3 to be a competitive inhibitor. Compounds 1 and 2 exhibited potent antibacterial activity with 10 μg/disk against Gram-positive bacteria, whereas kurarinol 3 did not ostend any antibacterial activity. Interestingly, kurarinol 3 inhibits production of melanin in S. bikiniensis without affecting the growth of microorganism. It is thus distinctly different from the other tyrosinase inhibitors 1 and 2. In addition, kurarinol 3 manifests relatively low cytotoxic activity (EC 50>30 μM) compared to 1 and 2. To account for these observations, we conducted molecular modeling studies. These suggested that the lavandulyl group within 3 is instrumental in the interaction with the enzyme. More specifically, the terminal hydroxy function within the lavandulyl group is most important for optimal binding.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0944-7113
1618-095X
DOI:10.1016/j.phymed.2007.09.022