Ion-Beam-Etched Profile Control of MTJ Cells for Improving the Switching Characteristics of High-Density MRAM

The effect of the reduction of the sidewall redeposition layer of magnetic materials is investigated for submicron-patterned magnetic random access memory (MRAM) cells. The sidewall redeposition layer is made at the first etch step of a magnetic tunnel junction (MTJ) with ion beam etching (IBE) in t...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on magnetics Vol. 42; no. 10; pp. 2745 - 2747
Main Authors Takahashi, S., Kai, T., Shimomura, N., Ueda, T., Amano, M., Yoshikawa, M., Kitagawa, E., Asao, Y., Ikegawa, S., Kishi, T., Yoda, H., Nagahara, K., Mukai, T., Hada, H.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.10.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The effect of the reduction of the sidewall redeposition layer of magnetic materials is investigated for submicron-patterned magnetic random access memory (MRAM) cells. The sidewall redeposition layer is made at the first etch step of a magnetic tunnel junction (MTJ) with ion beam etching (IBE) in the case that the sidewall angle of a hard mask is steep. By controlling the etched profile at the time of the first IBE step, formation of the redeposition layer is prevented. Functional test results of 1-Kb MRAM arrays show that the sidewall redeposition layer enlarges fluctuation of switching current, and reduces the write operation region. The effect of the sidewall redeposition on the switching characteristics of MRAM arrays is explained qualitatively by micromagnetic simulation solving the Landau-Lifshitz-Gilbert (LLG) equation
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0018-9464
1941-0069
DOI:10.1109/TMAG.2006.878862