Effects of Structural and Seismic Factors on the Constant-Strength Ductility Spectra Based on NGA-West2 Database

The constant-strength ductility spectrum is a nonlinear response spectrum that is commonly used to establish the demand curve of the seismic response during performance-based seismic design. It is affected by many factors. In this paper, to evaluate the effect of the major influencing factors, inclu...

Full description

Saved in:
Bibliographic Details
Published inShock and vibration Vol. 2020; no. 2020; pp. 1 - 10
Main Authors Xie, Lili, Liu, Xuan, Lai, Qinghui, Hu, Jinjun
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2020
Hindawi
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The constant-strength ductility spectrum is a nonlinear response spectrum that is commonly used to establish the demand curve of the seismic response during performance-based seismic design. It is affected by many factors. In this paper, to evaluate the effect of the major influencing factors, including the structural parameters and seismic factors, the constant-strength ductility spectrum is calculated under different conditions based on 5535 ground motion records. Conclusions are drawn based on the mean constant-strength ductility spectra. (1) With respect to the effects of structural factors, the variation trend of the ductility spectra is highly consistent with increasing T, and the ductility spectra are usually larger for larger ζ and smaller Cy and k2. (2) With respect to the seismic factors, the ductility spectra show obvious differences in different periods; however, some parameters, such as PGA, have no influence on the ductility spectra. The results of this study can provide a theoretical basis for the calculation of ductility demand in the seismic design of structures.
ISSN:1070-9622
1875-9203
DOI:10.1155/2020/8820582