Influences of past application rates of nitrogen and a catch crop on soil microbial communities between an intensive rotation

The aim of this study was to investigate influences of six-year past application rates of nitrogen and a catch crop, sweet corn (Zea mays L. ssp. Saccharata Sturt), on soil microbial community and diversity in a greenhouse-based intensive vegetable soil in eastern China. Soil electrical conductivity...

Full description

Saved in:
Bibliographic Details
Published inActa agriculturae Scandinavica. Section B, Soil and plant science Vol. 66; no. 2; pp. 97 - 106
Main Authors Shen, Weishou, Gao, Nan, Min, Ju, Shi, Weiming, He, Xinhua, Lin, Xiangui
Format Journal Article
LanguageEnglish
Published Abingdon Taylor & Francis 17.02.2016
Taylor & Francis LLC
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The aim of this study was to investigate influences of six-year past application rates of nitrogen and a catch crop, sweet corn (Zea mays L. ssp. Saccharata Sturt), on soil microbial community and diversity in a greenhouse-based intensive vegetable soil in eastern China. Soil electrical conductivity, pH, mineral nitrogen, phospholipid fatty acids (PLFA) profiles and carbon source utilization patterns under five annually past nitrogen rates (0, 348, 522, 696 and 870 kg nitrogen ha ⁻¹) were evaluated after the establishment of sweet corn during 1–1.5-month fallow period over three-year tomato/cucumber/celery rotations. The past nitrogen application rates exerted significant effects on soil electrical conductivity, pH, nitrate-nitrogen, ammonium-nitrogen and carbon source utilization patterns, but not on PLFAs profiles. The sweet corn had a significant effect on soil chemical properties, total and actinobacterial PLFAs, but not on carbon source utilization patterns. Soil electrical conductivity, nitrate-nitrogen and the total PLFAs decreased whilst soil organic carbon, pH and the actinobacterial PLFAs increased after the establishment of sweet corn. Soil microbial functional diversity from carbon source utilization patterns and actinobacterial PLFAs were greatest after the establishment of sweet corn at a 60% of the conventional nitrogen rate (i.e. 522 kg nitrogen ha ⁻¹). Soil electrical conductivity and ammonium-nitrogen were two key factors to determine carbon source utilization patterns, whilst soil pH was the key factor to determine PLFAs profiles. A combination of the catch crop sweet corn during summer fallow and a 60% of the conventional nitrogen rate is a sustainable pathway of utilizing greenhouse-based intensive vegetable soils in eastern China.
Bibliography:http://dx.doi.org/10.1080/09064710.2015.1072234
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1651-1913
0906-4710
1651-1913
DOI:10.1080/09064710.2015.1072234