Ultrasound-Assisted Mild Heating Treatment Improves the Emulsifying Properties of 11S Globulins

Ultrasonic technology is often used to modify proteins. Here, we investigated the effects of ultrasound alone or in combination with other heating methods on emulsifying properties and structure of glycinin (11S globulin). Structural alterations were assessed with Sodium dodecyl sulphate-polyacrylam...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 25; no. 4; p. 875
Main Authors Liu, Linlin, Zeng, Jianhua, Sun, Bingyu, Zhang, Na, He, Yinyuan, Shi, Yanguo, Zhu, Xiuqing
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 17.02.2020
MDPI AG
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Ultrasonic technology is often used to modify proteins. Here, we investigated the effects of ultrasound alone or in combination with other heating methods on emulsifying properties and structure of glycinin (11S globulin). Structural alterations were assessed with Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE), intrinsic fluorescence spectroscopy, ultraviolet (UV) absorption spectroscopy, and Fourier transform infrared (FTIR) spectroscopy. The size distribution and zeta-potential of 11S globulin were evaluated with a particle size analyzer. An SDS-PAGE analysis showed no remarkable changes in the primary structure of 11S globulin. Ultrasound treatment disrupted the 11S globulin aggregates into small particles with uniform size, narrowed their distribution and increased their surface charge density. Fluorescent spectroscopy and second-derivative UV spectroscopy revealed that ultrasound coupled with heating induced partial unfolding of 11S globulin, increasing its flexibility and hydrophobicity. FTIR further showed that the random coil and α-helix contents were higher while β-turn and β-sheet contents were lower in ultrasound combined with heating group compared to the control group. Consequently, the oil-water interface entirely distributed protein and reduced the surface tension. Moreover, ultrasound combined with heating at 60 °C increased the emulsifying activity index and emulsifying stability index of 11S globulins by 6.49-folds and 2.90-folds, respectively. These findings suggest that ultrasound combined with mild heating modifies the emulsification properties of 11S globulin.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules25040875