Analytical Design and Optimization of an Automotive Rubber Bushing

The ride comfort, driving safety, and handling of the vehicle should be designed and tuned to achieve the expectations defined in the company’s design. The ideal method of tuning the characteristics of the vehicle is to modify the bushings and mounts used in the chassis system. To deal with the nois...

Full description

Saved in:
Bibliographic Details
Published inShock and vibration Vol. 2019; no. 2019; pp. 1 - 13
Main Authors Ramírez Mendoza, Ricardo A., Lozoya-Santos, Jorge de Jesús, Tudón-Martínez, Juan Carlos, Rivas-Torres, Jonathan, Spaggiari, Andrea
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The ride comfort, driving safety, and handling of the vehicle should be designed and tuned to achieve the expectations defined in the company’s design. The ideal method of tuning the characteristics of the vehicle is to modify the bushings and mounts used in the chassis system. To deal with the noise, vibration and harshness on automobiles, elastomeric materials in mounts and bushings are determinant in the automotive components design, particularly those related to the suspension system. For most designs, stiffness is a key design parameter. Determination of stiffness is often necessary in order to ensure that excessive forces or deflections do not occur. Many companies use trial and error method to meet the requirements of stiffness curves. Optimization algorithms are an effective solution to this type of design problems. This paper presents a simulation-based methodology to design an automotive bushing with specific characteristic curves. Using an optimum design formulation, a mathematical model is proposed to design and then optimize structural parameters using a genetic algorithm. To validate the resulting data, a finite element analysis (FEA) is carried out with the optimized values. At the end, results between optimization, FEA, and characteristic curves are compared and discussed to establish the correlation among them.
ISSN:1070-9622
1875-9203
DOI:10.1155/2019/1873958