Exometabolomic Analysis of Decidualizing Human Endometrial Stromal and Perivascular Cells

Differentiation of endometrial fibroblasts into specialized decidual cells controls embryo implantation and transforms the cycling endometrium into a semi-permanent, immune-protective matrix that accommodates the placenta throughout pregnancy. This process starts during the midluteal phase of the me...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in cell and developmental biology Vol. 9; p. 626619
Main Authors Harden, Sarah L, Zhou, Jieliang, Gharanei, Seley, Diniz-da-Costa, Maria, Lucas, Emma S, Cui, Liang, Murakami, Keisuke, Fang, Jinling, Chen, Qingfeng, Brosens, Jan J, Lee, Yie Hou
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 28.01.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Differentiation of endometrial fibroblasts into specialized decidual cells controls embryo implantation and transforms the cycling endometrium into a semi-permanent, immune-protective matrix that accommodates the placenta throughout pregnancy. This process starts during the midluteal phase of the menstrual cycle with decidual transformation of perivascular cells (PVC) surrounding the terminal spiral arterioles and endometrial stromal cells (EnSC) underlying the luminal epithelium. Decidualization involves extensive cellular reprogramming and acquisition of a secretory phenotype, essential for coordinated placental trophoblast invasion. Secreted metabolites are an emerging class of signaling molecules, collectively known as the exometabolome. Here, we used liquid chromatography-mass spectrometry to characterize and analyze time-resolved changes in metabolite secretion (exometabolome) of primary PVC and EnSC decidualized over 8 days. PVC were isolated using positive selection of the cell surface marker SUSD2. We identified 79 annotated metabolites differentially secreted upon decidualization, including prostaglandin, sphingolipid, and hyaluronic acid metabolites. Secreted metabolites encompassed 21 metabolic pathways, most prominently glycerolipid and pyrimidine metabolism. Although temporal exometabolome changes were comparable between decidualizing PVC and EnSC, 32 metabolites were differentially secreted across the decidualization time-course. Further, targeted metabolomics demonstrated significant differences in secretion of purine pathway metabolites between decidualized PVC and EnSC. Taken together, our findings indicate that the metabolic footprints generated by different decidual subpopulations encode spatiotemporal information that may be important for optimal embryo implantation.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by: Biserka Mulac Jericevic, University of Rijeka, Croatia
These authors have contributed equally to this work
This article was submitted to Molecular Medicine, a section of the journal Frontiers in Cell and Developmental Biology
Reviewed by: Maximilian Schuff, NEXTCLINIC IVF Zentren Prof. Zech, Austria; Philippa Saunders, University of Edinburgh, United Kingdom; Bruno Miguel Fonseca, University of Porto, Portugal
ISSN:2296-634X
2296-634X
DOI:10.3389/fcell.2021.626619