Shaking Table Model Test and Seismic Performance Analysis of a High-Rise RC Shear Wall Structure

A building developed by Wuhan Shimao Group in Wuhan, China, is a high-rise residence with 56 stories near the Yangtze River. The building is a reinforced concrete structure, featuring with a nonregular T-type plane and a height 179.6 m, which is out of the restrictions specified by the China Technic...

Full description

Saved in:
Bibliographic Details
Published inShock and vibration Vol. 2019; no. 2019; pp. 1 - 17
Main Authors Shu-jin, Li, Kong, Fan, Wu, Cai
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text
ISSN1070-9622
1875-9203
DOI10.1155/2019/6189873

Cover

Loading…
More Information
Summary:A building developed by Wuhan Shimao Group in Wuhan, China, is a high-rise residence with 56 stories near the Yangtze River. The building is a reinforced concrete structure, featuring with a nonregular T-type plane and a height 179.6 m, which is out of the restrictions specified by the China Technical Specification for Concrete Structures of Tall Building (JGJ3-2010). To investigate its seismic performance, a shaking table test with a 1/30 scale model is carried out in Structural Laboratory in Wuhan University of Technology. The dynamic characteristics and the responses of the model subject to different seismic intensities are investigated via the analyzing of shaking table test data and the observed cracking pattern of the scaled model. Finite element analysis of the shaking table model is also established, and the results are coincident well with the test. An autoregressive method is also presented to identify the damage of the structure after suffering from different waves, and the results coincide well with the test and numerical simulation. The shaking table model test, numerical analysis, and damage identification prove that this building is well designed and can be safely put into use. Suggestions and measures to improve the seismic performance of structures are also presented.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1070-9622
1875-9203
DOI:10.1155/2019/6189873