Spider-capture-silk mimicking fibers with high-performance fog collection derived from superhydrophilicity and volume-swelling of gelatin knots

Spider-capture-silk (SCS) can directionally capture and transport water from humid air relying on the unique geometrical structure. Although there have been adequate reports on the fabrication of artificial SCSs from petroleum-based materials, it remains a big challenge to innovate bio-based SCS mim...

Full description

Saved in:
Bibliographic Details
Published inCollagen and Leather Vol. 5; no. 1; pp. 4 - 10
Main Authors Jiang, Yuanzhang, Venkatesan, Harun, Shi, Shuo, Wang, Cong, Cui, Miao, Zhang, Qiang, Tan, Lin, Hu, Jinlian
Format Journal Article
LanguageEnglish
Published Singapore Springer Nature Singapore 01.12.2023
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Spider-capture-silk (SCS) can directionally capture and transport water from humid air relying on the unique geometrical structure. Although there have been adequate reports on the fabrication of artificial SCSs from petroleum-based materials, it remains a big challenge to innovate bio-based SCS mimicking fibers with high-performance fog collection ability and efficiency simultaneously. Herein, we report an eco-friendly and economical fiber system for water collection by coating gelatin on degummed silk. Compared to the previously reported fibers with the best fog collection ability (~ 13.10 μL), Gelatin on silk fiber 10 (GSF10) can collect larger water droplet (~ 16.70 μL in 330 s) with ~ 98% less mass. Meanwhile, the water collection efficiency of GSF10 demonstrates ~ 72% and ~ 48% enhancement to the existing best water collection polymer coated SCS fibers and spidroin eMaSp2 coated degummed silk respectively in terms of volume-to-TCL (vapor–liquid-solid three-phase contact line) index. The simultaneous function of superhydrophilicity, surface energy gradient, and ~ 65% water-induced volume swelling of the gelatin knots are the key factors in advancing the water collection performance. Abundant availability of feedstocks and ~ 75% improved space utilization guarantee the scalability and practical application of such bio-based fiber. Graphic Abstract
ISSN:2097-1419
2731-6998
2524-7859
DOI:10.1186/s42825-023-00112-y