Modulation of DRAK2 Autophosphorylation by Antigen Receptor Signaling in Primary Lymphocytes

Death-associated protein-related apoptotic kinase-2 (DRAK2), a member of the death-associated protein-like family of serine/threonine kinases, is highly expressed in lymphoid organs and is a negative regulator of T cell activation. To investigate the regulation of DRAK2 activity in primary lymphocyt...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 282; no. 7; pp. 4573 - 4584
Main Authors Friedrich, Monica L., Cui, Meng, Hernandez, Jeniffer B., Weist, Brian M., Andersen, Hilde-Marie, Zhang, Xiaowu, Huang, Lan, Walsh, Craig M.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 16.02.2007
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Death-associated protein-related apoptotic kinase-2 (DRAK2), a member of the death-associated protein-like family of serine/threonine kinases, is highly expressed in lymphoid organs and is a negative regulator of T cell activation. To investigate the regulation of DRAK2 activity in primary lymphocytes, we employed mass spectrometry to identify sites of autophosphorylation on DRAK2. These studies have revealed a key site of autophosphorylation on serine 12. Using a phospho-specific antibody to detect Ser12 phosphorylation, we found that autophosphorylation is induced by antigen receptor stimulation in T and B cells. In Jurkat T cells, resting B cells and thymocytes, DRAK2 was hypophosphorylated on Ser12 but rapidly phosphorylated with antigen receptor ligation. This increase in phosphorylation was dependent on intracellular calcium mobilization, because BAPTA-AM blocked DRAK2 kinase activity, whereas the SERCA inhibitor thapsigargin promoted Ser12 phosphorylation. Our results show that DRAK2 kinase activity is regulated in a calcium-dependent manner and that Ser12 phosphorylation is necessary for optimal suppression of T cell activation by this kinase, suggesting a potential feedback loop may act to modulate the activity of this kinase following antigen receptor signaling.
Bibliography:http://www.jbc.org/
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M606675200