A human platelet angiotensin I-processing system. Identification of components and inhibition of angiotensin-converting enzyme by product
Mechanisms controlling the local generation of angiotensin II by vascular tissue are incompletely understood. Human platelets were examined for their ability to metabolize angiotensin I. Platelet-dependent angiotensin I metabolism was detected by a high performance liquid chromatography assay which...
Saved in:
Published in | The Journal of biological chemistry Vol. 260; no. 13; pp. 7857 - 7860 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Bethesda, MD
Elsevier Inc
05.07.1985
American Society for Biochemistry and Molecular Biology |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Mechanisms controlling the local generation of angiotensin II by vascular tissue are incompletely understood. Human platelets were examined for their ability to metabolize angiotensin I. Platelet-dependent angiotensin I metabolism was detected by a high performance liquid chromatography assay which allowed quantitation of angiotensin I substrate utilized and products formed. The major product of platelet-dependent angiotensin I metabolism was identified as des-Leu10-angiotensin I. The platelet des-Leu10-angiotensin I-generating activity had a pH optimum of 6.0-6.5 and was inhibited 100% by mersalyl acid (10(-4) M), 86% by leupeptin (10(-4) M), and 95% by iodoacetamide (10(-2) M). The activity had an approximate Mr = 70,000 as determined by Sephacryl S-200 gel filtration. Intact human platelets stimulated with calcium ionophore (1-10 microM) released 13.7-30.8% of the des-Leu10-angiotensin I-generating activity. Des-Leu10-angiotensin I, the major product of platelet angiotensin I metabolism, inhibited human serum and purified rabbit lung angiotensin-converting enzymes with an I50 of 3.7 X 10(-6) and 2.0 X 10(-6) M, respectively. These results suggest that the platelet may control local angiotensin II formation at vascular sites both by metabolism of the precursor peptide angiotensin I and by generation of an endogenous angiotensin-converting enzyme inhibitor, des-Leu10-angiotensin I. This platelet-dependent pathway may contribute to the control of local levels of vasoactive peptides, such as bradykinin and angiotensin II, so as to alter local tissue blood flow. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1016/S0021-9258(17)39531-5 |