A fault estimation and fault–tolerant control based sliding mode observer for LPV descriptor systems with time delay
This paper considers the problem of fault-tolerant control (FTC) and fault reconstruction of actuator faults for linear parameter varying (LPV) descriptor systems with time delay. A polytopic sliding mode observer (PSMO) is synthesized to achieve simultaneous reconstruction of LPV polytopic descript...
Saved in:
Published in | International journal of applied mathematics and computer science Vol. 31; no. 2; pp. 247 - 258 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Zielona Góra
Sciendo
01.06.2021
De Gruyter Poland University of Zielona Góra |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This paper considers the problem of fault-tolerant control (FTC) and fault reconstruction of actuator faults for linear parameter varying (LPV) descriptor systems with time delay. A polytopic sliding mode observer (PSMO) is synthesized to achieve simultaneous reconstruction of LPV polytopic descriptor system states and actuator faults. Exploiting the reconstructed actuator faults and state estimates, a fault-tolerant controller is designed to compensate the impact of actuator faults on system performance by stabilizing the closed-loop LPV delayed descriptor system. Besides, the controller and PSMO gains are obtained throughout the resolution of linear matrix inequalities (LMIs) using convex optimization techniques. The developed PSMO could force the output estimation error to converge to zero in a finite time when the actuators faults are bounded through the reinjection of the output estimation error via a nonlinear switching term. Simulation results applied to a given numerical system are presented to highlight the superiority and effectiveness of the proposed approach. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1641-876X 2083-8492 |
DOI: | 10.34768/amcs-2021-0017 |