The efficiency of multi-target drugs: the network approach might help drug design
Despite considerable progress in genome- and proteome-based high-throughput screening methods and rational drug design, the number of successful single-target drugs did not increase appreciably during the past decade. Network models suggest that partial inhibition of a surprisingly small number of t...
Saved in:
Published in | Trends in pharmacological sciences (Regular ed.) Vol. 26; no. 4; pp. 178 - 182 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.04.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Despite considerable progress in genome- and proteome-based high-throughput screening methods and rational drug design, the number of successful single-target drugs did not increase appreciably during the past decade. Network models suggest that partial inhibition of a surprisingly small number of targets can be more efficient than the complete inhibition of a single target. This and the success stories of multi-target drugs and combinatorial therapies led us to suggest that systematic drug-design strategies should be directed against multiple targets. We propose that the final effect of partial, but multiple, drug actions might often surpass that of complete drug action at a single target. The future success of this novel drug-design paradigm will depend not only on a new generation of computer models to identify the correct multiple targets and their multi-fitting, low-affinity drug candidates but also on more-efficient
in vivo testing. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-3 content type line 23 ObjectType-Review-1 |
ISSN: | 0165-6147 1873-3735 |
DOI: | 10.1016/j.tips.2005.02.007 |