SQUID-based simultaneous detection of NMR and biomagnetic signals at ultra-low magnetic fields

Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at ultra-low magnetic fields (ULF, fields of /spl sim//spl mu/T) have several advantages over their counterparts at higher magnetic fields. These include narrow line widths, the possibility of novel imaging schemes such as T/sub 1...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on applied superconductivity Vol. 15; no. 2; pp. 635 - 639
Main Authors Espy, M.A., Matlachov, A.N., Volegov, P.L., Mosher, J.C., Kraus, R.H.
Format Journal Article Conference Proceeding
LanguageEnglish
Published New York, NY IEEE 01.06.2005
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) at ultra-low magnetic fields (ULF, fields of /spl sim//spl mu/T) have several advantages over their counterparts at higher magnetic fields. These include narrow line widths, the possibility of novel imaging schemes such as T/sub 1/ weighted images, and reduced system cost and complexity. In addition, ULF NMR/MRI with superconducting quantum interference devices (SQUIDs) is compatible with simultaneous measurements of biomagnetic signals, a capability conventional systems cannot offer. SQUID-based ULF MRI has already been demonstrated, as have measurements of simultaneous MEG and NMR at ULF. In this paper we will show simultaneous magnetocardiography (MCG) and magnetomyography (MMG) with NMR are also possible. Another compelling application of NMR/MRI at ULF is the possibility of directly measuring magnetic resonance consequences of neuronal signals. In this paper we explore simultaneous MMG/NMR and MCG/NMR for an effect on the NMR signal, in T/sub 2//sup */, that might be associated with the effects of bioelectric currents.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1051-8223
1558-2515
DOI:10.1109/TASC.2005.849978