Effects of the calcium-regulating glycoprotein hormone stanniocalcin-1 within the nucleus of the solitary tract on arterial pressure and the baroreceptor reflex

Abstract Receptors for the calcium-regulating glycoprotein hormone stanniocalcin-1 (STC-1) have been found within the CNS and whether these receptors exist within the nucleus of the solitary tract (NTS), and their possible role in the regulation of arterial pressure (AP) is unknown. Experiments were...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience Vol. 207; pp. 88 - 102
Main Authors Ciriello, J, Oiamo, T.H, Moreau, J.M, Turner, J.K, Wagner, G.F
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Ltd 05.04.2012
Elsevier
Subjects
com
St
GTP
STC
HR
ADN
Cu
Sdl
PBS
4V
SDS
ap
MAP
Svl
NTS
12M
Sni
cc
GR
DMV
cp
Sc
Sg
Sl
Sm
Online AccessGet full text

Cover

Loading…
More Information
Summary:Abstract Receptors for the calcium-regulating glycoprotein hormone stanniocalcin-1 (STC-1) have been found within the CNS and whether these receptors exist within the nucleus of the solitary tract (NTS), and their possible role in the regulation of arterial pressure (AP) is unknown. Experiments were done in the rat to: (1) map the distribution of STC-1 receptors throughout NTS using in situ ligand binding that uses a stanniocalcin-alkaline phosphatase (STC-AP) fusion protein; (2) determine whether protein and gene expression for STC-1 exists within NTS using immunohistochemistry, Western blot and real time qPCR; (3) determine the effect of microinjection of STC-1 into NTS on AP and the baroreflex. Cells exhibiting STC-1 binding sites were found mainly within the caudal medial (Sm), gelantinous and commissural subnuclei of NTS. Cells containing STC-1 immunoreactivity were found to overlap those regions of NTS that contained STC-1 receptors. STC-1 protein and gene expression were also found within caudal NTS. In chloralose-urethane–anesthetized rats, microinjections of STC-1 (1.76–176 nM; 20 nl) into the caudal Sm elicited a dose-related decrease in AP. In contrast, injections of a nonbioactive form of STC-1 (STC-1+guanosine 5′-triphosphate [GTP]), the vehicle (0.9% saline), or GTP alone did not elicit cardiovascular responses. Additionally, injection of STC-1 into Sm potentiated the AP responses to electrical stimulation of the ipsilateral aortic depressor nerve. Finally, bilateral injection of STC-1 primary antiserum (1:1000; 100 nl) into Sm elicited a long lasting increase in AP, whereas microinjection of heat inactivated STC-1 antiserum did not alter AP. Taken together these data suggest that endogenous STC-1 signaling in NTS is involved in regulating the excitability of neurons that normally function as components of the baroreceptor reflex controlling AP.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0306-4522
1873-7544
DOI:10.1016/j.neuroscience.2012.01.044