Heat flow, heat capacity and thermal resistance of localized surfaces of the human body using a new calorimetric sensor

A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 × 2 cm 2 skin surface with a thermal penetration de...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 147; no. 13; pp. 7385 - 7398
Main Authors Rodríguez de Rivera, Pedro Jesús, Rodríguez de Rivera, Miriam, Socorro, Fabiola, Callicó, Gustavo Marrero, Calbet, Jose A. L., Rodríguez de Rivera, Manuel
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.07.2022
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 × 2 cm 2 skin surface with a thermal penetration depth of 3–4 mm. In this work, we report the thermal magnitudes recorded with this sensor in 6 different areas (temple, hand, abdomen, thigh, wrist and heel) of 6 healthy subjects of different genders and ages, which were measured under resting conditions. Heat flow and equivalent thermal resistance are proportionally related to each other and are highly variable in magnitude and different for each zone. The heat capacity is also different for each zone. The heat flow values varied from 362 ± 17 mW at the temple to 36 ± 12 mW at the heel for the same subject, when the sensor thermostat was set at 26 °C. The equivalent thermal resistance ranged from 23 ± 2 K W −1 in the volar area of the wrist to 52 ± 4 KW −1 in the inner thigh area. The heat capacity varies from 4.8 ± 0.4 J K −1 in the heel to 6.4 ± 0.2 J K −1 in the abdomen. These magnitudes were also assessed over a 2 × 1 cm 2 second-degree burn scar in the volar area of the wrist. The scar area had 27.6 and 11.6% lower heat capacity and equivalent thermal resistance, respectively, allowing an increased heat flow in the injured area. This work is a preliminary study of the measurement capacity of this new instrument.
AbstractList A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 x 2 cm.sup.2 skin surface with a thermal penetration depth of 3-4 mm. In this work, we report the thermal magnitudes recorded with this sensor in 6 different areas (temple, hand, abdomen, thigh, wrist and heel) of 6 healthy subjects of different genders and ages, which were measured under resting conditions. Heat flow and equivalent thermal resistance are proportionally related to each other and are highly variable in magnitude and different for each zone. The heat capacity is also different for each zone. The heat flow values varied from 362 ± 17 mW at the temple to 36 ± 12 mW at the heel for the same subject, when the sensor thermostat was set at 26 °C. The equivalent thermal resistance ranged from 23 ± 2 K W.sup.-1 in the volar area of the wrist to 52 ± 4 KW.sup.-1 in the inner thigh area. The heat capacity varies from 4.8 ± 0.4 J K.sup.-1 in the heel to 6.4 ± 0.2 J K.sup.-1 in the abdomen. These magnitudes were also assessed over a 2 x 1 cm.sup.2 second-degree burn scar in the volar area of the wrist. The scar area had 27.6 and 11.6% lower heat capacity and equivalent thermal resistance, respectively, allowing an increased heat flow in the injured area. This work is a preliminary study of the measurement capacity of this new instrument.
A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 × 2 cm2 skin surface with a thermal penetration depth of 3–4 mm. In this work, we report the thermal magnitudes recorded with this sensor in 6 different areas (temple, hand, abdomen, thigh, wrist and heel) of 6 healthy subjects of different genders and ages, which were measured under resting conditions. Heat flow and equivalent thermal resistance are proportionally related to each other and are highly variable in magnitude and different for each zone. The heat capacity is also different for each zone. The heat flow values varied from 362 ± 17 mW at the temple to 36 ± 12 mW at the heel for the same subject, when the sensor thermostat was set at 26 °C. The equivalent thermal resistance ranged from 23 ± 2 K W−1 in the volar area of the wrist to 52 ± 4 KW−1 in the inner thigh area. The heat capacity varies from 4.8 ± 0.4 J K−1 in the heel to 6.4 ± 0.2 J K−1 in the abdomen. These magnitudes were also assessed over a 2 × 1 cm2 second-degree burn scar in the volar area of the wrist. The scar area had 27.6 and 11.6% lower heat capacity and equivalent thermal resistance, respectively, allowing an increased heat flow in the injured area. This work is a preliminary study of the measurement capacity of this new instrument.
A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 × 2 cm 2 skin surface with a thermal penetration depth of 3–4 mm. In this work, we report the thermal magnitudes recorded with this sensor in 6 different areas (temple, hand, abdomen, thigh, wrist and heel) of 6 healthy subjects of different genders and ages, which were measured under resting conditions. Heat flow and equivalent thermal resistance are proportionally related to each other and are highly variable in magnitude and different for each zone. The heat capacity is also different for each zone. The heat flow values varied from 362 ± 17 mW at the temple to 36 ± 12 mW at the heel for the same subject, when the sensor thermostat was set at 26 °C. The equivalent thermal resistance ranged from 23 ± 2 K W −1 in the volar area of the wrist to 52 ± 4 KW −1 in the inner thigh area. The heat capacity varies from 4.8 ± 0.4 J K −1 in the heel to 6.4 ± 0.2 J K −1 in the abdomen. These magnitudes were also assessed over a 2 × 1 cm 2 second-degree burn scar in the volar area of the wrist. The scar area had 27.6 and 11.6% lower heat capacity and equivalent thermal resistance, respectively, allowing an increased heat flow in the injured area. This work is a preliminary study of the measurement capacity of this new instrument.
Audience Academic
Author Socorro, Fabiola
Rodríguez de Rivera, Miriam
Calbet, Jose A. L.
Callicó, Gustavo Marrero
Rodríguez de Rivera, Pedro Jesús
Rodríguez de Rivera, Manuel
Author_xml – sequence: 1
  givenname: Pedro Jesús
  surname: Rodríguez de Rivera
  fullname: Rodríguez de Rivera, Pedro Jesús
  organization: Department of Physics, University of Las Palmas de Gran Canaria, Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria
– sequence: 2
  givenname: Miriam
  surname: Rodríguez de Rivera
  fullname: Rodríguez de Rivera, Miriam
  organization: Department of Physics, University of Las Palmas de Gran Canaria
– sequence: 3
  givenname: Fabiola
  surname: Socorro
  fullname: Socorro, Fabiola
  organization: Department of Physics, University of Las Palmas de Gran Canaria
– sequence: 4
  givenname: Gustavo Marrero
  surname: Callicó
  fullname: Callicó, Gustavo Marrero
  organization: Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria
– sequence: 5
  givenname: Jose A. L.
  surname: Calbet
  fullname: Calbet, Jose A. L.
  organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Department of Physical Performance, The Norwegian School of Sport Sciences
– sequence: 6
  givenname: Manuel
  orcidid: 0000-0002-6737-4096
  surname: Rodríguez de Rivera
  fullname: Rodríguez de Rivera, Manuel
  email: manuel.rguezderivera@ulpgc.es
  organization: Department of Physics, University of Las Palmas de Gran Canaria
BookMark eNp9kVFrFDEQxxdpwbb2C_gU8Elwa5LdTTaPpagtFARtn8NcdnKXspucSZbz_PRmPaGcSAkkw_D7TWD-59WJDx6r6i2jV4xS-TExqmRTU85qxqjgNX1VnbGu72uuuDgpdVNqwTr6ujpP6YlSqhRlZ9XuFiETO4bdB7JZSgNbMC7vCfiB5A3GCUYSMbmUwRskwZIxGBjdLxxImqMFg2npFpZs5gk8WYVhT-bk_JoA8bgrM8cQ3YQ5OkMS-hTim-rUwpjw8u97UT1-_vRwc1vff_1yd3N9X5tWtLluQA5D04mmbaSAlTWKc4GrVmAv204hUG7kStnl6rnplW3BtIOy3dAy2qrmonp3mLuN4ceMKeunMEdfvtRcSNH1TLLumVrDiNp5G3IEM7lk9LWkkine82XW1X-ocgacnCmBWFf6R8L7I6EwGX_mNcwp6bvv347Z_sCaGFKKaHVJAbIrSgQ3akb1krQ-JK1L0vpP0poWlf-jbsu2Ie5flpqDlArs1xifF_OC9RvAl7vb
CitedBy_id crossref_primary_10_3390_s24185927
crossref_primary_10_1016_j_measurement_2022_111693
crossref_primary_10_1111_srt_13622
crossref_primary_10_1016_j_csite_2024_105391
crossref_primary_10_1108_HFF_06_2023_0355
Cites_doi 10.1007/BF02207197
10.1038/ncomms5938
10.1016/S0378-4371(01)00373-9
10.1016/j.jtherbio.2019.02.022
10.1139/apnm-2018-0882
10.1007/s10973-012-2839-8
10.7205/MILMED-D-16-00213
10.1016/j.sna.2015.10.004
10.1016/S0306-4565(01)00049-3
10.3390/s20123431
10.1118/1.3533940
10.1088/0957-0233/19/7/075104
10.1007/s00421-003-1018-9
10.1371/journal.pone.0118131
10.3390/s20030623
10.1002/adfm.201701282
10.1007/s10973-012-2468-2
10.3390/s16111864
10.1016/0034-5687(90)90014-P
10.1016/j.jtherbio.2014.10.006
10.1034/j.1399-6576.2002.460108.x
10.1016/j.ijheatmasstransfer.2018.06.039
10.3390/biology9050094
10.1016/j.jtherbio.2016.07.006
10.1364/BOE.8.002301
10.1007/s10973-005-0861-9
10.1088/0967-3334/34/7/781
10.1016/j.compbiomed.2018.05.021
10.1002/jpen.1589
10.1079/PNS2003282
10.1016/j.jtherbio.2016.06.022
10.1152/jappl.1999.87.1.243
10.1093/rheumatology/20.2.81
ContentType Journal Article
Copyright The Author(s) 2021
COPYRIGHT 2022 Springer
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: COPYRIGHT 2022 Springer
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
ISR
DOI 10.1007/s10973-021-11062-0
DatabaseName Springer Nature OA Free Journals
CrossRef
Gale In Context: Science
DatabaseTitle CrossRef
DatabaseTitleList


CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 7398
ExternalDocumentID A707192829
10_1007_s10973_021_11062_0
GrantInformation_xml – fundername: Ministerio de Ciencia, Innovación y Universidades
  grantid: FPU18/02990
  funderid: http://dx.doi.org/10.13039/100014440
– fundername: Universidad de las Palmas de Gran Canaria
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZE2
ZMTXR
~02
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c464t-3a7dd35634376abfc9226eb46e87459ea02c7b9fc7b982c89f4ac4d9f5d410493
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Fri Jul 25 11:06:16 EDT 2025
Tue Jun 17 22:09:31 EDT 2025
Tue Jun 10 21:04:38 EDT 2025
Fri Jun 27 05:26:43 EDT 2025
Thu Apr 24 22:58:34 EDT 2025
Tue Jul 01 02:44:41 EDT 2025
Fri Feb 21 02:49:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Keywords Direct calorimetry
Non-differential calorimeters
Medical calorimetry
Physiology
Skin thermal properties
Heat conduction calorimeters
Human heat flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c464t-3a7dd35634376abfc9226eb46e87459ea02c7b9fc7b982c89f4ac4d9f5d410493
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-6737-4096
OpenAccessLink https://link.springer.com/10.1007/s10973-021-11062-0
PQID 2676581715
PQPubID 2043843
PageCount 14
ParticipantIDs proquest_journals_2676581715
gale_infotracmisc_A707192829
gale_infotracacademiconefile_A707192829
gale_incontextgauss_ISR_A707192829
crossref_citationtrail_10_1007_s10973_021_11062_0
crossref_primary_10_1007_s10973_021_11062_0
springer_journals_10_1007_s10973_021_11062_0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2022
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References Taylor, Tipton, Kenny (CR31) 2014; 46
Hassanpour, Saboonchi (CR17) 2016; 62
Rodríguez de Rivera, Rodríguez de Rivera, Socorro, Rodríguez de Rivera (CR26) 2019; 81
Godoy, Hayat, Ramirez, Myers, Padilla, Krishna (CR5) 2017; 8
Marchiori, Regal, Arango, Delattre, Blayac, Ramuz (CR22) 2020; 20
Tian, Li, Webb, Krishnan, Bian, Song, Ning, Crawford, Kurniawan, Bonifas (CR24) 2017; 27
Wiegand, Naumov, Nőt, Vámhidy, Lőrinczy (CR14) 2013; 111
CR34
Rokita, Rok, Taton (CR2) 2011; 38
Castellani, Young, Kain, Sawka (CR10) 1999; 87
Agrawal, Pardasani (CR18) 2016; 62
Codau, Onofrei, Bedek, Dupont, Cochrane (CR13) 2015; 235
Deng, Liu (CR16) 2001; 300
Brauer, English, Sander, Timmermann, Braun, Weyland (CR12) 2002; 46
Alves, da Rocha, Gonzalez, Fonseca, Silva (CR7) 2020; 44
Cain, Livingstone, Nolan, Keefe (CR29) 1990; 79
Webb, Pielak, Bastien, Ayers, Niittynen, Kurniawan (CR21) 2015; 10
Rajapakse, Grennan, Jones, Wilkinson, Jayson (CR4) 1981; 20
Buller, Tharion, Cheuvront (CR35) 2013; 34
Kirchner, Rodríguez de Rivera, Seidel, Torra (CR28) 2005; 82
Pandolf, Gange, Latzka, Blank, Young, Sawka (CR11) 1992; 262
Kurazumil, Rezgals, Melikov (CR30) 2014; 4
Havenith (CR32) 2001; 26
Welles, Xu, Santee (CR36) 2018; 99
Speakman, Selman (CR9) 2003; 62
Demongeot, Flet-Berliac, Seligmann (CR1) 2020; 9
Mehdi, Fekecs, Zapf, Fekecs, Lőrinczy (CR15) 2013; 111
Nakagata, Yamada, Naito (CR8) 2019; 44
Gao, Zhang, Malyarchuk, Jia, Jang, Webb, Fu, Shi, Zhou, Shi (CR23) 2014; 4
Socorro, Rodríguez de Rivera, Rodríguez de Rivera (CR25) 2016; 16
Iyoho, Ng, McFadden (CR33) 2017; 182
Vecchio, Adebajo, Chard, Thomas, Hazleman (CR3) 1992; 11
Okabe, Fujimura, Okajima, Aiba, Maruyama (CR20) 2018; 126
Rodríguez de Rivera, Rodríguez de Rivera, Socorro, Rodríguez de Rivera, Callicó (CR27) 2020; 20
Brooks, Withers, Gore, Vogler, Plummer, Cormack (CR6) 2004; 91
Kharalkar, Hayes, Valvano (CR19) 2008; 19
M Agrawal (11062_CR18) 2016; 62
PC Vecchio (11062_CR3) 1992; 11
VGF Alves (11062_CR7) 2020; 44
L Tian (11062_CR24) 2017; 27
AP Welles (11062_CR36) 2018; 99
B Marchiori (11062_CR22) 2020; 20
Y Kurazumil (11062_CR30) 2014; 4
G Havenith (11062_CR32) 2001; 26
JR Speakman (11062_CR9) 2003; 62
AG Brooks (11062_CR6) 2004; 91
F Socorro (11062_CR25) 2016; 16
E Rokita (11062_CR2) 2011; 38
PJ Rodríguez de Rivera (11062_CR27) 2020; 20
PJ Rodríguez de Rivera (11062_CR26) 2019; 81
M Mehdi (11062_CR15) 2013; 111
T Nakagata (11062_CR8) 2019; 44
J Demongeot (11062_CR1) 2020; 9
R Kirchner (11062_CR28) 2005; 82
N Wiegand (11062_CR14) 2013; 111
NM Kharalkar (11062_CR19) 2008; 19
KB Pandolf (11062_CR11) 1992; 262
A Iyoho (11062_CR33) 2017; 182
MJ Buller (11062_CR35) 2013; 34
JW Castellani (11062_CR10) 1999; 87
L Gao (11062_CR23) 2014; 4
ZS Deng (11062_CR16) 2001; 300
S Hassanpour (11062_CR17) 2016; 62
A Brauer (11062_CR12) 2002; 46
C Rajapakse (11062_CR4) 1981; 20
RC Webb (11062_CR21) 2015; 10
NAS Taylor (11062_CR31) 2014; 46
TC Codau (11062_CR13) 2015; 235
JB Cain (11062_CR29) 1990; 79
T Okabe (11062_CR20) 2018; 126
SE Godoy (11062_CR5) 2017; 8
11062_CR34
References_xml – volume: 11
  start-page: 382
  issue: 3
  year: 1992
  end-page: 384
  ident: CR3
  article-title: Thermography of frozen shoulder and rotator cuff tendinitis
  publication-title: Clin Rheumatol
  doi: 10.1007/BF02207197
– volume: 4
  start-page: 4938
  year: 2014
  ident: CR23
  article-title: Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin
  publication-title: Nat Commun
  doi: 10.1038/ncomms5938
– volume: 300
  start-page: 521
  issue: 3–4
  year: 2001
  end-page: 530
  ident: CR16
  article-title: Blood perfusion-based model for characterizing the temperature fluctuation in living tissues
  publication-title: Phys A
  doi: 10.1016/S0378-4371(01)00373-9
– volume: 81
  start-page: 178
  year: 2019
  end-page: 184
  ident: CR26
  article-title: Measurement of human body surface heat flux using a calorimetric sensor
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2019.02.022
– volume: 44
  start-page: 1254
  issue: 11
  year: 2019
  end-page: 1257
  ident: CR8
  article-title: Metabolic equivalents of body weight resistance exercise with slow movement in older adults using indirect calorimetry
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/apnm-2018-0882
– volume: 111
  start-page: 1897
  issue: 3
  year: 2013
  end-page: 1902
  ident: CR14
  article-title: Differential scanning calorimetric examination of pathologic scar tissues of human skin
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-012-2839-8
– volume: 182
  start-page: 295
  year: 2017
  end-page: 303
  ident: CR33
  article-title: Modelling of gender differences in thermoregulation
  publication-title: Milit Med
  doi: 10.7205/MILMED-D-16-00213
– volume: 235
  start-page: 131
  year: 2015
  end-page: 139
  ident: CR13
  article-title: Embedded textile heat flow sensor characterization and application
  publication-title: Sens Actuat A Phys
  doi: 10.1016/j.sna.2015.10.004
– volume: 26
  start-page: 387
  issue: 4–5
  year: 2001
  end-page: 393
  ident: CR32
  article-title: Human surface to mass ratio and body core temperature in exercise heat stress—a concept revisited
  publication-title: J Therm Biol
  doi: 10.1016/S0306-4565(01)00049-3
– volume: 20
  start-page: 3431
  issue: 12
  year: 2020
  ident: CR27
  article-title: A method to determine human skin heat capacity using a non-invasive calorimetric sensor
  publication-title: Sensors
  doi: 10.3390/s20123431
– volume: 38
  start-page: 765
  year: 2011
  end-page: 772
  ident: CR2
  article-title: Application of thermography for the assessment of allergen-induced skin reactions
  publication-title: Med Phys
  doi: 10.1118/1.3533940
– volume: 19
  start-page: 075104
  issue: 7
  year: 2008
  ident: CR19
  article-title: Pulse-power integrated-decay technique for the measurement of thermal conductivity
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/19/7/075104
– volume: 91
  start-page: 638
  issue: 5–6
  year: 2004
  end-page: 648
  ident: CR6
  article-title: Measurement and prediction of METs during household activities in 35- to 45-year-old females
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-003-1018-9
– volume: 10
  start-page: e018131
  issue: 2
  year: 2015
  ident: CR21
  article-title: Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0118131
– volume: 20
  start-page: 623
  issue: 3
  year: 2020
  ident: CR22
  article-title: PVDF-TrFE-based stretchable contact and non-contact temperature sensor for e-skin application
  publication-title: Sensors
  doi: 10.3390/s20030623
– volume: 27
  start-page: 1701282
  issue: 26
  year: 2017
  ident: CR24
  article-title: Flexible and stretchable 3 omega sensors for thermal characterization of human skin
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201701282
– volume: 262
  start-page: R617
  issue: 4
  year: 1992
  end-page: R623
  ident: CR11
  article-title: Human thermoregulatory responses during cold water immersion after artificially induced sunburn
  publication-title: Am J Physiol
– volume: 111
  start-page: 1801
  issue: 3
  year: 2013
  end-page: 1804
  ident: CR15
  article-title: Differential scanning calorimetry (DSC) analysis of human plasma in different psoriasis stages
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-012-2468-2
– volume: 16
  start-page: 1864
  issue: 11
  year: 2016
  ident: CR25
  article-title: Calorimetric minisensor for the localized measurement of surface heat dissipated from the human body
  publication-title: Sensors
  doi: 10.3390/s16111864
– volume: 79
  start-page: 145
  issue: 2
  year: 1990
  end-page: 150
  ident: CR29
  article-title: Respiratory heat loss during work at various ambient temperatures
  publication-title: Respir Physiol
  doi: 10.1016/0034-5687(90)90014-P
– volume: 46
  start-page: 72
  year: 2014
  end-page: 101
  ident: CR31
  article-title: Considerations for the measurement of core, skin and mean body temperatures
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2014.10.006
– volume: 46
  start-page: 43
  issue: 1
  year: 2002
  end-page: 50
  ident: CR12
  article-title: Construction and evaluation of a manikin for perioperative heat exchange
  publication-title: A Anaesthesiol Scand
  doi: 10.1034/j.1399-6576.2002.460108.x
– volume: 126
  start-page: 625
  year: 2018
  end-page: 635
  ident: CR20
  article-title: Non-invasive measurement of effective thermal conductivity of human skin with a guard-heated thermistor probe
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.06.039
– volume: 9
  start-page: 94
  issue: 5
  year: 2020
  ident: CR1
  article-title: Temperature decreases spread parameters of the new covid-19 case dynamics
  publication-title: Biology
  doi: 10.3390/biology9050094
– volume: 62
  start-page: 98
  year: 2016
  end-page: 105
  ident: CR18
  article-title: Finite element model to study temperature distribution in skin and deep tissues of human limbs
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2016.07.006
– volume: 4
  start-page: 126
  year: 2014
  ident: CR30
  article-title: Convective heat transfer coefficients of the human body under forced convection from ceiling
  publication-title: J Ergonomics
– volume: 8
  start-page: 2301
  issue: 4
  year: 2017
  end-page: 2323
  ident: CR5
  article-title: Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.002301
– volume: 82
  start-page: 179
  issue: 1
  year: 2005
  end-page: 184
  ident: CR28
  article-title: Identification of micro-scale calorimetric devices—Part VI. An approach by RC-representative model to improvements in TAM microcalorimeters
  publication-title: J Therm Anal Calc
  doi: 10.1007/s10973-005-0861-9
– ident: CR34
– volume: 34
  start-page: 781
  issue: 7
  year: 2013
  end-page: 798
  ident: CR35
  article-title: Estimation of human core temperature from sequential heart rate observations
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/34/7/781
– volume: 99
  start-page: 1
  year: 2018
  end-page: 6
  ident: CR36
  article-title: Estimation of core body temperature from skin temperature, heat flux, and heart rate using a Kalman filter
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.05.021
– volume: 44
  start-page: 129
  issue: 1
  year: 2020
  end-page: 137
  ident: CR7
  article-title: Resting energy expenditure measured by indirect calorimetry in obese patients: variation within different BMI ranges
  publication-title: J Parenter Enterp Nutr
  doi: 10.1002/jpen.1589
– volume: 62
  start-page: 621
  issue: 3
  year: 2003
  end-page: 634
  ident: CR9
  article-title: Physical activity and resting metabolic rate
  publication-title: Proc Nutr Soc
  doi: 10.1079/PNS2003282
– volume: 62
  start-page: 150
  year: 2016
  end-page: 158
  ident: CR17
  article-title: Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2016.06.022
– volume: 87
  start-page: 243
  issue: 1
  year: 1999
  end-page: 246
  ident: CR10
  article-title: Thermoregulatory responses to cold water at different times of day
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1999.87.1.243
– volume: 20
  start-page: 81
  issue: 2
  year: 1981
  end-page: 87
  ident: CR4
  article-title: Thermography in the assessment of peripheral joint inflammation—a re-evaluation
  publication-title: Rheumatol Rehabil
  doi: 10.1093/rheumatology/20.2.81
– volume: 8
  start-page: 2301
  issue: 4
  year: 2017
  ident: 11062_CR5
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.8.002301
– volume: 11
  start-page: 382
  issue: 3
  year: 1992
  ident: 11062_CR3
  publication-title: Clin Rheumatol
  doi: 10.1007/BF02207197
– volume: 44
  start-page: 129
  issue: 1
  year: 2020
  ident: 11062_CR7
  publication-title: J Parenter Enterp Nutr
  doi: 10.1002/jpen.1589
– volume: 126
  start-page: 625
  year: 2018
  ident: 11062_CR20
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2018.06.039
– volume: 4
  start-page: 126
  year: 2014
  ident: 11062_CR30
  publication-title: J Ergonomics
– volume: 20
  start-page: 81
  issue: 2
  year: 1981
  ident: 11062_CR4
  publication-title: Rheumatol Rehabil
  doi: 10.1093/rheumatology/20.2.81
– volume: 111
  start-page: 1801
  issue: 3
  year: 2013
  ident: 11062_CR15
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-012-2468-2
– volume: 20
  start-page: 3431
  issue: 12
  year: 2020
  ident: 11062_CR27
  publication-title: Sensors
  doi: 10.3390/s20123431
– volume: 46
  start-page: 72
  year: 2014
  ident: 11062_CR31
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2014.10.006
– volume: 235
  start-page: 131
  year: 2015
  ident: 11062_CR13
  publication-title: Sens Actuat A Phys
  doi: 10.1016/j.sna.2015.10.004
– volume: 262
  start-page: R617
  issue: 4
  year: 1992
  ident: 11062_CR11
  publication-title: Am J Physiol
– volume: 20
  start-page: 623
  issue: 3
  year: 2020
  ident: 11062_CR22
  publication-title: Sensors
  doi: 10.3390/s20030623
– volume: 87
  start-page: 243
  issue: 1
  year: 1999
  ident: 11062_CR10
  publication-title: J Appl Physiol
  doi: 10.1152/jappl.1999.87.1.243
– volume: 62
  start-page: 621
  issue: 3
  year: 2003
  ident: 11062_CR9
  publication-title: Proc Nutr Soc
  doi: 10.1079/PNS2003282
– volume: 27
  start-page: 1701282
  issue: 26
  year: 2017
  ident: 11062_CR24
  publication-title: Adv Funct Mater
  doi: 10.1002/adfm.201701282
– volume: 26
  start-page: 387
  issue: 4–5
  year: 2001
  ident: 11062_CR32
  publication-title: J Therm Biol
  doi: 10.1016/S0306-4565(01)00049-3
– volume: 19
  start-page: 075104
  issue: 7
  year: 2008
  ident: 11062_CR19
  publication-title: Meas Sci Technol
  doi: 10.1088/0957-0233/19/7/075104
– volume: 16
  start-page: 1864
  issue: 11
  year: 2016
  ident: 11062_CR25
  publication-title: Sensors
  doi: 10.3390/s16111864
– volume: 91
  start-page: 638
  issue: 5–6
  year: 2004
  ident: 11062_CR6
  publication-title: Eur J Appl Physiol
  doi: 10.1007/s00421-003-1018-9
– volume: 300
  start-page: 521
  issue: 3–4
  year: 2001
  ident: 11062_CR16
  publication-title: Phys A
  doi: 10.1016/S0378-4371(01)00373-9
– volume: 46
  start-page: 43
  issue: 1
  year: 2002
  ident: 11062_CR12
  publication-title: A Anaesthesiol Scand
  doi: 10.1034/j.1399-6576.2002.460108.x
– volume: 81
  start-page: 178
  year: 2019
  ident: 11062_CR26
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2019.02.022
– volume: 38
  start-page: 765
  year: 2011
  ident: 11062_CR2
  publication-title: Med Phys
  doi: 10.1118/1.3533940
– volume: 111
  start-page: 1897
  issue: 3
  year: 2013
  ident: 11062_CR14
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-012-2839-8
– volume: 62
  start-page: 98
  year: 2016
  ident: 11062_CR18
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2016.07.006
– volume: 82
  start-page: 179
  issue: 1
  year: 2005
  ident: 11062_CR28
  publication-title: J Therm Anal Calc
  doi: 10.1007/s10973-005-0861-9
– volume: 9
  start-page: 94
  issue: 5
  year: 2020
  ident: 11062_CR1
  publication-title: Biology
  doi: 10.3390/biology9050094
– volume: 4
  start-page: 4938
  year: 2014
  ident: 11062_CR23
  publication-title: Nat Commun
  doi: 10.1038/ncomms5938
– volume: 99
  start-page: 1
  year: 2018
  ident: 11062_CR36
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2018.05.021
– volume: 182
  start-page: 295
  year: 2017
  ident: 11062_CR33
  publication-title: Milit Med
  doi: 10.7205/MILMED-D-16-00213
– volume: 62
  start-page: 150
  year: 2016
  ident: 11062_CR17
  publication-title: J Therm Biol
  doi: 10.1016/j.jtherbio.2016.06.022
– volume: 10
  start-page: e018131
  issue: 2
  year: 2015
  ident: 11062_CR21
  publication-title: PloS ONE
  doi: 10.1371/journal.pone.0118131
– volume: 79
  start-page: 145
  issue: 2
  year: 1990
  ident: 11062_CR29
  publication-title: Respir Physiol
  doi: 10.1016/0034-5687(90)90014-P
– volume: 44
  start-page: 1254
  issue: 11
  year: 2019
  ident: 11062_CR8
  publication-title: Appl Physiol Nutr Metab
  doi: 10.1139/apnm-2018-0882
– ident: 11062_CR34
– volume: 34
  start-page: 781
  issue: 7
  year: 2013
  ident: 11062_CR35
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/34/7/781
SSID ssj0009901
Score 2.3704712
Snippet A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 7385
SubjectTerms Abdomen
Analytical Chemistry
Burns and scalds
Calorimetry
Chemistry
Chemistry and Materials Science
Conduction heating
Equivalence
Heat transfer
Heat transmission
Inorganic Chemistry
Measurement Science and Instrumentation
Measuring instruments
Penetration depth
Physical Chemistry
Polymer Sciences
Sensors
Skin
Specific heat
Thermal properties
Thermal resistance
Thermodynamic properties
Thermostats
Thigh
Wrist
Title Heat flow, heat capacity and thermal resistance of localized surfaces of the human body using a new calorimetric sensor
URI https://link.springer.com/article/10.1007/s10973-021-11062-0
https://www.proquest.com/docview/2676581715
Volume 147
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61cGgviBaqptBoVSFxAEt-rNfeY4hI01ZwACLR02q9jwgJ7CpOhODXM-PYTUMfUi-25B0_Zz3zjXbmG4AD7qMwt4UL4jxKA57kOtAZJdiEXmQ6tUXctAM6OxfjCf96nV63RWF1l-3eLUk2lvqXYjeZ0ZpjFKDLEnGAgfpmSrE7zuJJPFhR7cpwGWbhHCC687ZU5s_XWHNHz43yb6ujjdMZbcNWixbZYKneN_DClW_h1bBr0rYD92O0pczfVvfHjMwqM-j8DCJrpkvLCNzd4fkYUhNMRP2yyrPGfd08OsvqxcxTShYdRVnWNOxjRWUfGOXDT5lmiLrxmpSmd0e9twyrMe6tZrswGZ1eDcdB20shMFzweZDozNokFQlHi6ILbyTiLldw4YjvXjodxiYrpKdNHptceq4Nt9KnlmPEJpN3sFFWpXsPLBV5jpIWVRxxZwoZeke8pTpMbCis60HUfVJlWqJx6ndxq1YUyaQGhWpQjRpU2IOjn-f8WNJs_FP6E2lKEX9FSQkyU72oa_Xl8kINMsRMkpaHe3DYCvkKb290W2-AL0GUV2uS-2uSqEKzPtxNCNX-4LWKRYbYLcqitAfH3SRZDf_92T_8n_gevI6p4KJJEN6Hjfls4T4iDJoXfdgcjE5Ozmn_-fu30z68HIphv_kXngCRt__g
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED_UiPrFadRHBgwby2Gyyx1IsVasHH-Bt2exDBE2kaSn6651JU0t9gZccktm8vmTnG3bmG0KOmAv81GTWC9Mg9liUKk8lmGDjO56o2GRh1Q7o6pr37tnFQ_xQy-RgLcyX9XsscRMJrjQGHjgqHnoQni8xiJQxfa_DOzOBXeFPgitAHkXO6wKZn88x54S-TsXf1kQrV9NdJSs1R6TtCahrZMHm66TRmbZm2yDjHsyg1D0X41OKkynV4PI08GmqckOR0r3AeAikkRwCqrRwtHJaT-_W0HI0cJiIhXvBllZt-mhWmDeKWfCPVFHg2nBOTM57wY5bmpYQ7RaDTXLfPbvr9Ly6g4KnGWdDL1KJMVHMIwbziMqcFsC2bMa4RZV7YZUf6iQTDjdpqFPhmNLMCBcbBnGaiLbIYl7kdpvQmKcpWBoANmBWZ8J3FtVKlR8ZnxvbJMH0lUpdy4tjl4tnORNGRhgkwCArGKTfJCefY14n4hp_Wh8iUhJVK3JMi3lUo7KU57c3sp0AUxK4KNwkx7WRK-DyWtVVBvAQKHQ1Z9maswQI9fzh6Qch69-6lCFPgLEFSRA3yen0I5kd_v3ed_5nfkAavburvuyfX1_ukuUQSy6qFOEWWRwORnYPiNAw26_-gA8RHPrF
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEF9EofVFtLX09NSlFHzQYD42m-yjnB6ntlJsBd-WzX6IoIlc7jj0r3dmL_E8awu-5CE72XzMZuc3zMxvCPnOXBTmprBBnEdpwJJcBSrDBJvQ8Uylpoh9O6Cf53xwyU6v0qsXVfw-270NSU5rGpClqRwd3Bt38KLwTWQYf4wCMF88DsBpXwJPxQdqe7w3o90V4dTlgvWA1OdN2czbc8yZptcb9F-RUm-A-qtkpUGO9HCq6jWyYMtP5GOvbdj2mUwGsK9Sd1tN9ilusVSDIdSAsqkqDUWgdwfXg3uNkBF0TStHvSm7ebSG1uOhw_QsPAuy1Dfvo0VlHijmxl9TRQGBw5yYsneHfbg0rcEHrobr5LJ__Kc3CJq-CoFmnI2CRGXGJClPGOwuqnBaAAazBeMWue-FVWGss0I4POSxzoVjSjMjXGoYeG8i-UIWy6q0XwlNeZ6DpAF1R8zqQoTOIoepChMTcmM7JGo_qdQN6Tj2vriVM7pkVIMENUivBhl2yN7zNfdTyo3_Sn9DTUnksigxWeZajetanvy-kIcZ4CeBoeIO2W2EXAW316qpPYCXQPqrOcnunCSoUM8PtwtCNj97LWOeAY6LsijtkP12kcyG__3sG-8T3yEffh315Y-T87NNshxjHYbPG-6SxdFwbLcAHY2Kbf8DPAFUqwMb
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+flow%2C+heat+capacity+and+thermal+resistance+of+localized+surfaces+of+the+human+body+using+a+new+calorimetric+sensor&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Rodr%C3%ADguez+de+Rivera%2C+Pedro+Jes%C3%BAs&rft.au=Rodr%C3%ADguez+de+Rivera%2C+Miriam&rft.au=Socorro%2C+Fabiola&rft.au=Callic%C3%B3%2C+Gustavo+Marrero&rft.date=2022-07-01&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=147&rft.issue=13&rft.spage=7385&rft.epage=7398&rft_id=info:doi/10.1007%2Fs10973-021-11062-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10973_021_11062_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon