Heat flow, heat capacity and thermal resistance of localized surfaces of the human body using a new calorimetric sensor
A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 × 2 cm 2 skin surface with a thermal penetration de...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 147; no. 13; pp. 7385 - 7398 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.07.2022
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 × 2 cm
2
skin surface with a thermal penetration depth of 3–4 mm. In this work, we report the thermal magnitudes recorded with this sensor in 6 different areas (temple, hand, abdomen, thigh, wrist and heel) of 6 healthy subjects of different genders and ages, which were measured under resting conditions. Heat flow and equivalent thermal resistance are proportionally related to each other and are highly variable in magnitude and different for each zone. The heat capacity is also different for each zone. The heat flow values varied from 362 ± 17 mW at the temple to 36 ± 12 mW at the heel for the same subject, when the sensor thermostat was set at 26 °C. The equivalent thermal resistance ranged from 23 ± 2 K W
−1
in the volar area of the wrist to 52 ± 4 KW
−1
in the inner thigh area. The heat capacity varies from 4.8 ± 0.4 J K
−1
in the heel to 6.4 ± 0.2 J K
−1
in the abdomen. These magnitudes were also assessed over a 2 × 1 cm
2
second-degree burn scar in the volar area of the wrist. The scar area had 27.6 and 11.6% lower heat capacity and equivalent thermal resistance, respectively, allowing an increased heat flow in the injured area. This work is a preliminary study of the measurement capacity of this new instrument. |
---|---|
AbstractList | A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 x 2 cm.sup.2 skin surface with a thermal penetration depth of 3-4 mm. In this work, we report the thermal magnitudes recorded with this sensor in 6 different areas (temple, hand, abdomen, thigh, wrist and heel) of 6 healthy subjects of different genders and ages, which were measured under resting conditions. Heat flow and equivalent thermal resistance are proportionally related to each other and are highly variable in magnitude and different for each zone. The heat capacity is also different for each zone. The heat flow values varied from 362 ± 17 mW at the temple to 36 ± 12 mW at the heel for the same subject, when the sensor thermostat was set at 26 °C. The equivalent thermal resistance ranged from 23 ± 2 K W.sup.-1 in the volar area of the wrist to 52 ± 4 KW.sup.-1 in the inner thigh area. The heat capacity varies from 4.8 ± 0.4 J K.sup.-1 in the heel to 6.4 ± 0.2 J K.sup.-1 in the abdomen. These magnitudes were also assessed over a 2 x 1 cm.sup.2 second-degree burn scar in the volar area of the wrist. The scar area had 27.6 and 11.6% lower heat capacity and equivalent thermal resistance, respectively, allowing an increased heat flow in the injured area. This work is a preliminary study of the measurement capacity of this new instrument. A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 × 2 cm2 skin surface with a thermal penetration depth of 3–4 mm. In this work, we report the thermal magnitudes recorded with this sensor in 6 different areas (temple, hand, abdomen, thigh, wrist and heel) of 6 healthy subjects of different genders and ages, which were measured under resting conditions. Heat flow and equivalent thermal resistance are proportionally related to each other and are highly variable in magnitude and different for each zone. The heat capacity is also different for each zone. The heat flow values varied from 362 ± 17 mW at the temple to 36 ± 12 mW at the heel for the same subject, when the sensor thermostat was set at 26 °C. The equivalent thermal resistance ranged from 23 ± 2 K W−1 in the volar area of the wrist to 52 ± 4 KW−1 in the inner thigh area. The heat capacity varies from 4.8 ± 0.4 J K−1 in the heel to 6.4 ± 0.2 J K−1 in the abdomen. These magnitudes were also assessed over a 2 × 1 cm2 second-degree burn scar in the volar area of the wrist. The scar area had 27.6 and 11.6% lower heat capacity and equivalent thermal resistance, respectively, allowing an increased heat flow in the injured area. This work is a preliminary study of the measurement capacity of this new instrument. A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to the sensor thermostat. This device enables the assessment of the thermal properties of a 2 × 2 cm 2 skin surface with a thermal penetration depth of 3–4 mm. In this work, we report the thermal magnitudes recorded with this sensor in 6 different areas (temple, hand, abdomen, thigh, wrist and heel) of 6 healthy subjects of different genders and ages, which were measured under resting conditions. Heat flow and equivalent thermal resistance are proportionally related to each other and are highly variable in magnitude and different for each zone. The heat capacity is also different for each zone. The heat flow values varied from 362 ± 17 mW at the temple to 36 ± 12 mW at the heel for the same subject, when the sensor thermostat was set at 26 °C. The equivalent thermal resistance ranged from 23 ± 2 K W −1 in the volar area of the wrist to 52 ± 4 KW −1 in the inner thigh area. The heat capacity varies from 4.8 ± 0.4 J K −1 in the heel to 6.4 ± 0.2 J K −1 in the abdomen. These magnitudes were also assessed over a 2 × 1 cm 2 second-degree burn scar in the volar area of the wrist. The scar area had 27.6 and 11.6% lower heat capacity and equivalent thermal resistance, respectively, allowing an increased heat flow in the injured area. This work is a preliminary study of the measurement capacity of this new instrument. |
Audience | Academic |
Author | Socorro, Fabiola Rodríguez de Rivera, Miriam Calbet, Jose A. L. Callicó, Gustavo Marrero Rodríguez de Rivera, Pedro Jesús Rodríguez de Rivera, Manuel |
Author_xml | – sequence: 1 givenname: Pedro Jesús surname: Rodríguez de Rivera fullname: Rodríguez de Rivera, Pedro Jesús organization: Department of Physics, University of Las Palmas de Gran Canaria, Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria – sequence: 2 givenname: Miriam surname: Rodríguez de Rivera fullname: Rodríguez de Rivera, Miriam organization: Department of Physics, University of Las Palmas de Gran Canaria – sequence: 3 givenname: Fabiola surname: Socorro fullname: Socorro, Fabiola organization: Department of Physics, University of Las Palmas de Gran Canaria – sequence: 4 givenname: Gustavo Marrero surname: Callicó fullname: Callicó, Gustavo Marrero organization: Institute for Applied Microelectronics (IUMA), University of Las Palmas de Gran Canaria – sequence: 5 givenname: Jose A. L. surname: Calbet fullname: Calbet, Jose A. L. organization: Department of Physical Education, University of Las Palmas de Gran Canaria, Department of Physical Performance, The Norwegian School of Sport Sciences – sequence: 6 givenname: Manuel orcidid: 0000-0002-6737-4096 surname: Rodríguez de Rivera fullname: Rodríguez de Rivera, Manuel email: manuel.rguezderivera@ulpgc.es organization: Department of Physics, University of Las Palmas de Gran Canaria |
BookMark | eNp9kVFrFDEQxxdpwbb2C_gU8Elwa5LdTTaPpagtFARtn8NcdnKXspucSZbz_PRmPaGcSAkkw_D7TWD-59WJDx6r6i2jV4xS-TExqmRTU85qxqjgNX1VnbGu72uuuDgpdVNqwTr6ujpP6YlSqhRlZ9XuFiETO4bdB7JZSgNbMC7vCfiB5A3GCUYSMbmUwRskwZIxGBjdLxxImqMFg2npFpZs5gk8WYVhT-bk_JoA8bgrM8cQ3YQ5OkMS-hTim-rUwpjw8u97UT1-_vRwc1vff_1yd3N9X5tWtLluQA5D04mmbaSAlTWKc4GrVmAv204hUG7kStnl6rnplW3BtIOy3dAy2qrmonp3mLuN4ceMKeunMEdfvtRcSNH1TLLumVrDiNp5G3IEM7lk9LWkkine82XW1X-ocgacnCmBWFf6R8L7I6EwGX_mNcwp6bvv347Z_sCaGFKKaHVJAbIrSgQ3akb1krQ-JK1L0vpP0poWlf-jbsu2Ie5flpqDlArs1xifF_OC9RvAl7vb |
CitedBy_id | crossref_primary_10_3390_s24185927 crossref_primary_10_1016_j_measurement_2022_111693 crossref_primary_10_1111_srt_13622 crossref_primary_10_1016_j_csite_2024_105391 crossref_primary_10_1108_HFF_06_2023_0355 |
Cites_doi | 10.1007/BF02207197 10.1038/ncomms5938 10.1016/S0378-4371(01)00373-9 10.1016/j.jtherbio.2019.02.022 10.1139/apnm-2018-0882 10.1007/s10973-012-2839-8 10.7205/MILMED-D-16-00213 10.1016/j.sna.2015.10.004 10.1016/S0306-4565(01)00049-3 10.3390/s20123431 10.1118/1.3533940 10.1088/0957-0233/19/7/075104 10.1007/s00421-003-1018-9 10.1371/journal.pone.0118131 10.3390/s20030623 10.1002/adfm.201701282 10.1007/s10973-012-2468-2 10.3390/s16111864 10.1016/0034-5687(90)90014-P 10.1016/j.jtherbio.2014.10.006 10.1034/j.1399-6576.2002.460108.x 10.1016/j.ijheatmasstransfer.2018.06.039 10.3390/biology9050094 10.1016/j.jtherbio.2016.07.006 10.1364/BOE.8.002301 10.1007/s10973-005-0861-9 10.1088/0967-3334/34/7/781 10.1016/j.compbiomed.2018.05.021 10.1002/jpen.1589 10.1079/PNS2003282 10.1016/j.jtherbio.2016.06.022 10.1152/jappl.1999.87.1.243 10.1093/rheumatology/20.2.81 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 COPYRIGHT 2022 Springer The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: COPYRIGHT 2022 Springer – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION ISR |
DOI | 10.1007/s10973-021-11062-0 |
DatabaseName | Springer Nature OA Free Journals CrossRef Gale In Context: Science |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 7398 |
ExternalDocumentID | A707192829 10_1007_s10973_021_11062_0 |
GrantInformation_xml | – fundername: Ministerio de Ciencia, Innovación y Universidades grantid: FPU18/02990 funderid: http://dx.doi.org/10.13039/100014440 – fundername: Universidad de las Palmas de Gran Canaria |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS C6C CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c464t-3a7dd35634376abfc9226eb46e87459ea02c7b9fc7b982c89f4ac4d9f5d410493 |
IEDL.DBID | U2A |
ISSN | 1388-6150 |
IngestDate | Fri Jul 25 11:06:16 EDT 2025 Tue Jun 17 22:09:31 EDT 2025 Tue Jun 10 21:04:38 EDT 2025 Fri Jun 27 05:26:43 EDT 2025 Thu Apr 24 22:58:34 EDT 2025 Tue Jul 01 02:44:41 EDT 2025 Fri Feb 21 02:49:06 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Keywords | Direct calorimetry Non-differential calorimeters Medical calorimetry Physiology Skin thermal properties Heat conduction calorimeters Human heat flow |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c464t-3a7dd35634376abfc9226eb46e87459ea02c7b9fc7b982c89f4ac4d9f5d410493 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-6737-4096 |
OpenAccessLink | https://link.springer.com/10.1007/s10973-021-11062-0 |
PQID | 2676581715 |
PQPubID | 2043843 |
PageCount | 14 |
ParticipantIDs | proquest_journals_2676581715 gale_infotracmisc_A707192829 gale_infotracacademiconefile_A707192829 gale_incontextgauss_ISR_A707192829 crossref_citationtrail_10_1007_s10973_021_11062_0 crossref_primary_10_1007_s10973_021_11062_0 springer_journals_10_1007_s10973_021_11062_0 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-07-01 |
PublicationDateYYYYMMDD | 2022-07-01 |
PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2022 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | Taylor, Tipton, Kenny (CR31) 2014; 46 Hassanpour, Saboonchi (CR17) 2016; 62 Rodríguez de Rivera, Rodríguez de Rivera, Socorro, Rodríguez de Rivera (CR26) 2019; 81 Godoy, Hayat, Ramirez, Myers, Padilla, Krishna (CR5) 2017; 8 Marchiori, Regal, Arango, Delattre, Blayac, Ramuz (CR22) 2020; 20 Tian, Li, Webb, Krishnan, Bian, Song, Ning, Crawford, Kurniawan, Bonifas (CR24) 2017; 27 Wiegand, Naumov, Nőt, Vámhidy, Lőrinczy (CR14) 2013; 111 CR34 Rokita, Rok, Taton (CR2) 2011; 38 Castellani, Young, Kain, Sawka (CR10) 1999; 87 Agrawal, Pardasani (CR18) 2016; 62 Codau, Onofrei, Bedek, Dupont, Cochrane (CR13) 2015; 235 Deng, Liu (CR16) 2001; 300 Brauer, English, Sander, Timmermann, Braun, Weyland (CR12) 2002; 46 Alves, da Rocha, Gonzalez, Fonseca, Silva (CR7) 2020; 44 Cain, Livingstone, Nolan, Keefe (CR29) 1990; 79 Webb, Pielak, Bastien, Ayers, Niittynen, Kurniawan (CR21) 2015; 10 Rajapakse, Grennan, Jones, Wilkinson, Jayson (CR4) 1981; 20 Buller, Tharion, Cheuvront (CR35) 2013; 34 Kirchner, Rodríguez de Rivera, Seidel, Torra (CR28) 2005; 82 Pandolf, Gange, Latzka, Blank, Young, Sawka (CR11) 1992; 262 Kurazumil, Rezgals, Melikov (CR30) 2014; 4 Havenith (CR32) 2001; 26 Welles, Xu, Santee (CR36) 2018; 99 Speakman, Selman (CR9) 2003; 62 Demongeot, Flet-Berliac, Seligmann (CR1) 2020; 9 Mehdi, Fekecs, Zapf, Fekecs, Lőrinczy (CR15) 2013; 111 Nakagata, Yamada, Naito (CR8) 2019; 44 Gao, Zhang, Malyarchuk, Jia, Jang, Webb, Fu, Shi, Zhou, Shi (CR23) 2014; 4 Socorro, Rodríguez de Rivera, Rodríguez de Rivera (CR25) 2016; 16 Iyoho, Ng, McFadden (CR33) 2017; 182 Vecchio, Adebajo, Chard, Thomas, Hazleman (CR3) 1992; 11 Okabe, Fujimura, Okajima, Aiba, Maruyama (CR20) 2018; 126 Rodríguez de Rivera, Rodríguez de Rivera, Socorro, Rodríguez de Rivera, Callicó (CR27) 2020; 20 Brooks, Withers, Gore, Vogler, Plummer, Cormack (CR6) 2004; 91 Kharalkar, Hayes, Valvano (CR19) 2008; 19 M Agrawal (11062_CR18) 2016; 62 PC Vecchio (11062_CR3) 1992; 11 VGF Alves (11062_CR7) 2020; 44 L Tian (11062_CR24) 2017; 27 AP Welles (11062_CR36) 2018; 99 B Marchiori (11062_CR22) 2020; 20 Y Kurazumil (11062_CR30) 2014; 4 G Havenith (11062_CR32) 2001; 26 JR Speakman (11062_CR9) 2003; 62 AG Brooks (11062_CR6) 2004; 91 F Socorro (11062_CR25) 2016; 16 E Rokita (11062_CR2) 2011; 38 PJ Rodríguez de Rivera (11062_CR27) 2020; 20 PJ Rodríguez de Rivera (11062_CR26) 2019; 81 M Mehdi (11062_CR15) 2013; 111 T Nakagata (11062_CR8) 2019; 44 J Demongeot (11062_CR1) 2020; 9 R Kirchner (11062_CR28) 2005; 82 N Wiegand (11062_CR14) 2013; 111 NM Kharalkar (11062_CR19) 2008; 19 KB Pandolf (11062_CR11) 1992; 262 A Iyoho (11062_CR33) 2017; 182 MJ Buller (11062_CR35) 2013; 34 JW Castellani (11062_CR10) 1999; 87 L Gao (11062_CR23) 2014; 4 ZS Deng (11062_CR16) 2001; 300 S Hassanpour (11062_CR17) 2016; 62 A Brauer (11062_CR12) 2002; 46 C Rajapakse (11062_CR4) 1981; 20 RC Webb (11062_CR21) 2015; 10 NAS Taylor (11062_CR31) 2014; 46 TC Codau (11062_CR13) 2015; 235 JB Cain (11062_CR29) 1990; 79 T Okabe (11062_CR20) 2018; 126 SE Godoy (11062_CR5) 2017; 8 11062_CR34 |
References_xml | – volume: 11 start-page: 382 issue: 3 year: 1992 end-page: 384 ident: CR3 article-title: Thermography of frozen shoulder and rotator cuff tendinitis publication-title: Clin Rheumatol doi: 10.1007/BF02207197 – volume: 4 start-page: 4938 year: 2014 ident: CR23 article-title: Epidermal photonic devices for quantitative imaging of temperature and thermal transport characteristics of the skin publication-title: Nat Commun doi: 10.1038/ncomms5938 – volume: 300 start-page: 521 issue: 3–4 year: 2001 end-page: 530 ident: CR16 article-title: Blood perfusion-based model for characterizing the temperature fluctuation in living tissues publication-title: Phys A doi: 10.1016/S0378-4371(01)00373-9 – volume: 81 start-page: 178 year: 2019 end-page: 184 ident: CR26 article-title: Measurement of human body surface heat flux using a calorimetric sensor publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2019.02.022 – volume: 44 start-page: 1254 issue: 11 year: 2019 end-page: 1257 ident: CR8 article-title: Metabolic equivalents of body weight resistance exercise with slow movement in older adults using indirect calorimetry publication-title: Appl Physiol Nutr Metab doi: 10.1139/apnm-2018-0882 – volume: 111 start-page: 1897 issue: 3 year: 2013 end-page: 1902 ident: CR14 article-title: Differential scanning calorimetric examination of pathologic scar tissues of human skin publication-title: J Therm Anal Calorim doi: 10.1007/s10973-012-2839-8 – volume: 182 start-page: 295 year: 2017 end-page: 303 ident: CR33 article-title: Modelling of gender differences in thermoregulation publication-title: Milit Med doi: 10.7205/MILMED-D-16-00213 – volume: 235 start-page: 131 year: 2015 end-page: 139 ident: CR13 article-title: Embedded textile heat flow sensor characterization and application publication-title: Sens Actuat A Phys doi: 10.1016/j.sna.2015.10.004 – volume: 26 start-page: 387 issue: 4–5 year: 2001 end-page: 393 ident: CR32 article-title: Human surface to mass ratio and body core temperature in exercise heat stress—a concept revisited publication-title: J Therm Biol doi: 10.1016/S0306-4565(01)00049-3 – volume: 20 start-page: 3431 issue: 12 year: 2020 ident: CR27 article-title: A method to determine human skin heat capacity using a non-invasive calorimetric sensor publication-title: Sensors doi: 10.3390/s20123431 – volume: 38 start-page: 765 year: 2011 end-page: 772 ident: CR2 article-title: Application of thermography for the assessment of allergen-induced skin reactions publication-title: Med Phys doi: 10.1118/1.3533940 – volume: 19 start-page: 075104 issue: 7 year: 2008 ident: CR19 article-title: Pulse-power integrated-decay technique for the measurement of thermal conductivity publication-title: Meas Sci Technol doi: 10.1088/0957-0233/19/7/075104 – volume: 91 start-page: 638 issue: 5–6 year: 2004 end-page: 648 ident: CR6 article-title: Measurement and prediction of METs during household activities in 35- to 45-year-old females publication-title: Eur J Appl Physiol doi: 10.1007/s00421-003-1018-9 – volume: 10 start-page: e018131 issue: 2 year: 2015 ident: CR21 article-title: Thermal transport characteristics of human skin measured in vivo using ultrathin conformal arrays of thermal sensors and actuators publication-title: PloS ONE doi: 10.1371/journal.pone.0118131 – volume: 20 start-page: 623 issue: 3 year: 2020 ident: CR22 article-title: PVDF-TrFE-based stretchable contact and non-contact temperature sensor for e-skin application publication-title: Sensors doi: 10.3390/s20030623 – volume: 27 start-page: 1701282 issue: 26 year: 2017 ident: CR24 article-title: Flexible and stretchable 3 omega sensors for thermal characterization of human skin publication-title: Adv Funct Mater doi: 10.1002/adfm.201701282 – volume: 262 start-page: R617 issue: 4 year: 1992 end-page: R623 ident: CR11 article-title: Human thermoregulatory responses during cold water immersion after artificially induced sunburn publication-title: Am J Physiol – volume: 111 start-page: 1801 issue: 3 year: 2013 end-page: 1804 ident: CR15 article-title: Differential scanning calorimetry (DSC) analysis of human plasma in different psoriasis stages publication-title: J Therm Anal Calorim doi: 10.1007/s10973-012-2468-2 – volume: 16 start-page: 1864 issue: 11 year: 2016 ident: CR25 article-title: Calorimetric minisensor for the localized measurement of surface heat dissipated from the human body publication-title: Sensors doi: 10.3390/s16111864 – volume: 79 start-page: 145 issue: 2 year: 1990 end-page: 150 ident: CR29 article-title: Respiratory heat loss during work at various ambient temperatures publication-title: Respir Physiol doi: 10.1016/0034-5687(90)90014-P – volume: 46 start-page: 72 year: 2014 end-page: 101 ident: CR31 article-title: Considerations for the measurement of core, skin and mean body temperatures publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2014.10.006 – volume: 46 start-page: 43 issue: 1 year: 2002 end-page: 50 ident: CR12 article-title: Construction and evaluation of a manikin for perioperative heat exchange publication-title: A Anaesthesiol Scand doi: 10.1034/j.1399-6576.2002.460108.x – volume: 126 start-page: 625 year: 2018 end-page: 635 ident: CR20 article-title: Non-invasive measurement of effective thermal conductivity of human skin with a guard-heated thermistor probe publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.06.039 – volume: 9 start-page: 94 issue: 5 year: 2020 ident: CR1 article-title: Temperature decreases spread parameters of the new covid-19 case dynamics publication-title: Biology doi: 10.3390/biology9050094 – volume: 62 start-page: 98 year: 2016 end-page: 105 ident: CR18 article-title: Finite element model to study temperature distribution in skin and deep tissues of human limbs publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2016.07.006 – volume: 4 start-page: 126 year: 2014 ident: CR30 article-title: Convective heat transfer coefficients of the human body under forced convection from ceiling publication-title: J Ergonomics – volume: 8 start-page: 2301 issue: 4 year: 2017 end-page: 2323 ident: CR5 article-title: Detection theory for accurate and non-invasive skin cancer diagnosis using dynamic thermal imaging publication-title: Biomed Opt Express doi: 10.1364/BOE.8.002301 – volume: 82 start-page: 179 issue: 1 year: 2005 end-page: 184 ident: CR28 article-title: Identification of micro-scale calorimetric devices—Part VI. An approach by RC-representative model to improvements in TAM microcalorimeters publication-title: J Therm Anal Calc doi: 10.1007/s10973-005-0861-9 – ident: CR34 – volume: 34 start-page: 781 issue: 7 year: 2013 end-page: 798 ident: CR35 article-title: Estimation of human core temperature from sequential heart rate observations publication-title: Physiol Meas doi: 10.1088/0967-3334/34/7/781 – volume: 99 start-page: 1 year: 2018 end-page: 6 ident: CR36 article-title: Estimation of core body temperature from skin temperature, heat flux, and heart rate using a Kalman filter publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.05.021 – volume: 44 start-page: 129 issue: 1 year: 2020 end-page: 137 ident: CR7 article-title: Resting energy expenditure measured by indirect calorimetry in obese patients: variation within different BMI ranges publication-title: J Parenter Enterp Nutr doi: 10.1002/jpen.1589 – volume: 62 start-page: 621 issue: 3 year: 2003 end-page: 634 ident: CR9 article-title: Physical activity and resting metabolic rate publication-title: Proc Nutr Soc doi: 10.1079/PNS2003282 – volume: 62 start-page: 150 year: 2016 end-page: 158 ident: CR17 article-title: Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2016.06.022 – volume: 87 start-page: 243 issue: 1 year: 1999 end-page: 246 ident: CR10 article-title: Thermoregulatory responses to cold water at different times of day publication-title: J Appl Physiol doi: 10.1152/jappl.1999.87.1.243 – volume: 20 start-page: 81 issue: 2 year: 1981 end-page: 87 ident: CR4 article-title: Thermography in the assessment of peripheral joint inflammation—a re-evaluation publication-title: Rheumatol Rehabil doi: 10.1093/rheumatology/20.2.81 – volume: 8 start-page: 2301 issue: 4 year: 2017 ident: 11062_CR5 publication-title: Biomed Opt Express doi: 10.1364/BOE.8.002301 – volume: 11 start-page: 382 issue: 3 year: 1992 ident: 11062_CR3 publication-title: Clin Rheumatol doi: 10.1007/BF02207197 – volume: 44 start-page: 129 issue: 1 year: 2020 ident: 11062_CR7 publication-title: J Parenter Enterp Nutr doi: 10.1002/jpen.1589 – volume: 126 start-page: 625 year: 2018 ident: 11062_CR20 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2018.06.039 – volume: 4 start-page: 126 year: 2014 ident: 11062_CR30 publication-title: J Ergonomics – volume: 20 start-page: 81 issue: 2 year: 1981 ident: 11062_CR4 publication-title: Rheumatol Rehabil doi: 10.1093/rheumatology/20.2.81 – volume: 111 start-page: 1801 issue: 3 year: 2013 ident: 11062_CR15 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-012-2468-2 – volume: 20 start-page: 3431 issue: 12 year: 2020 ident: 11062_CR27 publication-title: Sensors doi: 10.3390/s20123431 – volume: 46 start-page: 72 year: 2014 ident: 11062_CR31 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2014.10.006 – volume: 235 start-page: 131 year: 2015 ident: 11062_CR13 publication-title: Sens Actuat A Phys doi: 10.1016/j.sna.2015.10.004 – volume: 262 start-page: R617 issue: 4 year: 1992 ident: 11062_CR11 publication-title: Am J Physiol – volume: 20 start-page: 623 issue: 3 year: 2020 ident: 11062_CR22 publication-title: Sensors doi: 10.3390/s20030623 – volume: 87 start-page: 243 issue: 1 year: 1999 ident: 11062_CR10 publication-title: J Appl Physiol doi: 10.1152/jappl.1999.87.1.243 – volume: 62 start-page: 621 issue: 3 year: 2003 ident: 11062_CR9 publication-title: Proc Nutr Soc doi: 10.1079/PNS2003282 – volume: 27 start-page: 1701282 issue: 26 year: 2017 ident: 11062_CR24 publication-title: Adv Funct Mater doi: 10.1002/adfm.201701282 – volume: 26 start-page: 387 issue: 4–5 year: 2001 ident: 11062_CR32 publication-title: J Therm Biol doi: 10.1016/S0306-4565(01)00049-3 – volume: 19 start-page: 075104 issue: 7 year: 2008 ident: 11062_CR19 publication-title: Meas Sci Technol doi: 10.1088/0957-0233/19/7/075104 – volume: 16 start-page: 1864 issue: 11 year: 2016 ident: 11062_CR25 publication-title: Sensors doi: 10.3390/s16111864 – volume: 91 start-page: 638 issue: 5–6 year: 2004 ident: 11062_CR6 publication-title: Eur J Appl Physiol doi: 10.1007/s00421-003-1018-9 – volume: 300 start-page: 521 issue: 3–4 year: 2001 ident: 11062_CR16 publication-title: Phys A doi: 10.1016/S0378-4371(01)00373-9 – volume: 46 start-page: 43 issue: 1 year: 2002 ident: 11062_CR12 publication-title: A Anaesthesiol Scand doi: 10.1034/j.1399-6576.2002.460108.x – volume: 81 start-page: 178 year: 2019 ident: 11062_CR26 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2019.02.022 – volume: 38 start-page: 765 year: 2011 ident: 11062_CR2 publication-title: Med Phys doi: 10.1118/1.3533940 – volume: 111 start-page: 1897 issue: 3 year: 2013 ident: 11062_CR14 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-012-2839-8 – volume: 62 start-page: 98 year: 2016 ident: 11062_CR18 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2016.07.006 – volume: 82 start-page: 179 issue: 1 year: 2005 ident: 11062_CR28 publication-title: J Therm Anal Calc doi: 10.1007/s10973-005-0861-9 – volume: 9 start-page: 94 issue: 5 year: 2020 ident: 11062_CR1 publication-title: Biology doi: 10.3390/biology9050094 – volume: 4 start-page: 4938 year: 2014 ident: 11062_CR23 publication-title: Nat Commun doi: 10.1038/ncomms5938 – volume: 99 start-page: 1 year: 2018 ident: 11062_CR36 publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2018.05.021 – volume: 182 start-page: 295 year: 2017 ident: 11062_CR33 publication-title: Milit Med doi: 10.7205/MILMED-D-16-00213 – volume: 62 start-page: 150 year: 2016 ident: 11062_CR17 publication-title: J Therm Biol doi: 10.1016/j.jtherbio.2016.06.022 – volume: 10 start-page: e018131 issue: 2 year: 2015 ident: 11062_CR21 publication-title: PloS ONE doi: 10.1371/journal.pone.0118131 – volume: 79 start-page: 145 issue: 2 year: 1990 ident: 11062_CR29 publication-title: Respir Physiol doi: 10.1016/0034-5687(90)90014-P – volume: 44 start-page: 1254 issue: 11 year: 2019 ident: 11062_CR8 publication-title: Appl Physiol Nutr Metab doi: 10.1139/apnm-2018-0882 – ident: 11062_CR34 – volume: 34 start-page: 781 issue: 7 year: 2013 ident: 11062_CR35 publication-title: Physiol Meas doi: 10.1088/0967-3334/34/7/781 |
SSID | ssj0009901 |
Score | 2.3704712 |
Snippet | A non-invasive sensor equipped with a programmable thermostat has been developed to assess in vivo the heat flow transmitted by conduction from human skin to... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 7385 |
SubjectTerms | Abdomen Analytical Chemistry Burns and scalds Calorimetry Chemistry Chemistry and Materials Science Conduction heating Equivalence Heat transfer Heat transmission Inorganic Chemistry Measurement Science and Instrumentation Measuring instruments Penetration depth Physical Chemistry Polymer Sciences Sensors Skin Specific heat Thermal properties Thermal resistance Thermodynamic properties Thermostats Thigh Wrist |
Title | Heat flow, heat capacity and thermal resistance of localized surfaces of the human body using a new calorimetric sensor |
URI | https://link.springer.com/article/10.1007/s10973-021-11062-0 https://www.proquest.com/docview/2676581715 |
Volume | 147 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61cGgviBaqptBoVSFxAEt-rNfeY4hI01ZwACLR02q9jwgJ7CpOhODXM-PYTUMfUi-25B0_Zz3zjXbmG4AD7qMwt4UL4jxKA57kOtAZJdiEXmQ6tUXctAM6OxfjCf96nV63RWF1l-3eLUk2lvqXYjeZ0ZpjFKDLEnGAgfpmSrE7zuJJPFhR7cpwGWbhHCC687ZU5s_XWHNHz43yb6ujjdMZbcNWixbZYKneN_DClW_h1bBr0rYD92O0pczfVvfHjMwqM-j8DCJrpkvLCNzd4fkYUhNMRP2yyrPGfd08OsvqxcxTShYdRVnWNOxjRWUfGOXDT5lmiLrxmpSmd0e9twyrMe6tZrswGZ1eDcdB20shMFzweZDozNokFQlHi6ILbyTiLldw4YjvXjodxiYrpKdNHptceq4Nt9KnlmPEJpN3sFFWpXsPLBV5jpIWVRxxZwoZeke8pTpMbCis60HUfVJlWqJx6ndxq1YUyaQGhWpQjRpU2IOjn-f8WNJs_FP6E2lKEX9FSQkyU72oa_Xl8kINMsRMkpaHe3DYCvkKb290W2-AL0GUV2uS-2uSqEKzPtxNCNX-4LWKRYbYLcqitAfH3SRZDf_92T_8n_gevI6p4KJJEN6Hjfls4T4iDJoXfdgcjE5Ozmn_-fu30z68HIphv_kXngCRt__g |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF5ED_UiPrFadRHBgwby2Gyyx1IsVasHH-Bt2exDBE2kaSn6651JU0t9gZccktm8vmTnG3bmG0KOmAv81GTWC9Mg9liUKk8lmGDjO56o2GRh1Q7o6pr37tnFQ_xQy-RgLcyX9XsscRMJrjQGHjgqHnoQni8xiJQxfa_DOzOBXeFPgitAHkXO6wKZn88x54S-TsXf1kQrV9NdJSs1R6TtCahrZMHm66TRmbZm2yDjHsyg1D0X41OKkynV4PI08GmqckOR0r3AeAikkRwCqrRwtHJaT-_W0HI0cJiIhXvBllZt-mhWmDeKWfCPVFHg2nBOTM57wY5bmpYQ7RaDTXLfPbvr9Ly6g4KnGWdDL1KJMVHMIwbziMqcFsC2bMa4RZV7YZUf6iQTDjdpqFPhmNLMCBcbBnGaiLbIYl7kdpvQmKcpWBoANmBWZ8J3FtVKlR8ZnxvbJMH0lUpdy4tjl4tnORNGRhgkwCArGKTfJCefY14n4hp_Wh8iUhJVK3JMi3lUo7KU57c3sp0AUxK4KNwkx7WRK-DyWtVVBvAQKHQ1Z9maswQI9fzh6Qch69-6lCFPgLEFSRA3yen0I5kd_v3ed_5nfkAavburvuyfX1_ukuUQSy6qFOEWWRwORnYPiNAw26_-gA8RHPrF |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS9xAEF9EofVFtLX09NSlFHzQYD42m-yjnB6ntlJsBd-WzX6IoIlc7jj0r3dmL_E8awu-5CE72XzMZuc3zMxvCPnOXBTmprBBnEdpwJJcBSrDBJvQ8Uylpoh9O6Cf53xwyU6v0qsXVfw-270NSU5rGpClqRwd3Bt38KLwTWQYf4wCMF88DsBpXwJPxQdqe7w3o90V4dTlgvWA1OdN2czbc8yZptcb9F-RUm-A-qtkpUGO9HCq6jWyYMtP5GOvbdj2mUwGsK9Sd1tN9ilusVSDIdSAsqkqDUWgdwfXg3uNkBF0TStHvSm7ebSG1uOhw_QsPAuy1Dfvo0VlHijmxl9TRQGBw5yYsneHfbg0rcEHrobr5LJ__Kc3CJq-CoFmnI2CRGXGJClPGOwuqnBaAAazBeMWue-FVWGss0I4POSxzoVjSjMjXGoYeG8i-UIWy6q0XwlNeZ6DpAF1R8zqQoTOIoepChMTcmM7JGo_qdQN6Tj2vriVM7pkVIMENUivBhl2yN7zNfdTyo3_Sn9DTUnksigxWeZajetanvy-kIcZ4CeBoeIO2W2EXAW316qpPYCXQPqrOcnunCSoUM8PtwtCNj97LWOeAY6LsijtkP12kcyG__3sG-8T3yEffh315Y-T87NNshxjHYbPG-6SxdFwbLcAHY2Kbf8DPAFUqwMb |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heat+flow%2C+heat+capacity+and+thermal+resistance+of+localized+surfaces+of+the+human+body+using+a+new+calorimetric+sensor&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Rodr%C3%ADguez+de+Rivera%2C+Pedro+Jes%C3%BAs&rft.au=Rodr%C3%ADguez+de+Rivera%2C+Miriam&rft.au=Socorro%2C+Fabiola&rft.au=Callic%C3%B3%2C+Gustavo+Marrero&rft.date=2022-07-01&rft.issn=1388-6150&rft.eissn=1588-2926&rft.volume=147&rft.issue=13&rft.spage=7385&rft.epage=7398&rft_id=info:doi/10.1007%2Fs10973-021-11062-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10973_021_11062_0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |