Microstructure and formation mechanism of grain-refining particles in Al-Ti-C-RE grain refiners
The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM)...
Saved in:
Published in | Journal of Rare Earths Vol. 33; no. 5; pp. 553 - 560 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.05.2015
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the RE addition resulted in the formation of TiAl3/Ti2Al20RE core-shell structured primary particles, and the size of TiAl3 core decreased, while the thickness of Ti2Al20RE increased with increase of RE contents. As compared to Al-5Ti-0.2C grain refiner, the grain refining efficiency was gradually improved with increase of RE contents, which was mainly attributed to the TiAl3/Ti2Al20RE core-shell structured primary particles and insoluble TiC nuclei formed inα-Al matrix. The formation mechanism of core-shell structure was further investigated based on Ginstling-Brounstein model. |
---|---|
Bibliography: | XU Cong,XIAO Wenlong,ZHAO Weitao,WANG Wenhong,Shuji Hanada,Hiroshi Yamagata,MA Chaoli Al-Ti-C-RE; core-shell structure; grain refinement; formation mechanism; rare earths 11-2788/TF The Al-5Ti-0.2C-based grain refiners with different contents of rare earth (RE) were successfully prepared via powder metallurgy and vacuum casting. The microstructural evolution has been studied by X-ray diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the RE addition resulted in the formation of TiAl3/Ti2Al20RE core-shell structured primary particles, and the size of TiAl3 core decreased, while the thickness of Ti2Al20RE increased with increase of RE contents. As compared to Al-5Ti-0.2C grain refiner, the grain refining efficiency was gradually improved with increase of RE contents, which was mainly attributed to the TiAl3/Ti2Al20RE core-shell structured primary particles and insoluble TiC nuclei formed inα-Al matrix. The formation mechanism of core-shell structure was further investigated based on Ginstling-Brounstein model. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1002-0721 2509-4963 |
DOI: | 10.1016/s1002-0721(14)60455-5 |