The synthesis of adenine-modified analogs of adenosylcobalamin and their coenzymic function in the reaction catalyzed by diol dehydrase

Five analogs of adenosylcobalamin modified in the adenine moiety of the Co beta ligand were synthesized and tested for coenzymic function with diol dehydrase of Klebsiella pneumoniae ATCC 8724. 1-Deaza and 3-deaza analogs of adenosylcobalamin were active as coenzyme, whereas 7-deaza and N6,N6-dimeth...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of biological chemistry Vol. 261; no. 20; pp. 9289 - 9293
Main Authors Toraya, T, Matsumoto, T, Ichikawa, M, Itoh, T, Sugawara, T, Mizuno, Y
Format Journal Article
LanguageEnglish
Published Bethesda, MD Elsevier Inc 15.07.1986
American Society for Biochemistry and Molecular Biology
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Five analogs of adenosylcobalamin modified in the adenine moiety of the Co beta ligand were synthesized and tested for coenzymic function with diol dehydrase of Klebsiella pneumoniae ATCC 8724. 1-Deaza and 3-deaza analogs of adenosylcobalamin were active as coenzyme, whereas 7-deaza and N6,N6-dimethyl derivatives and guanosylcobalamin did not show detectable coenzymic activity. 7-Deaza and N6,N6-dimethyl analogs acted as strong competitive inhibitors with respect to adenosylcobalamin. The formation of cob(II)alamin as intermediate in the catalytic reaction was spectroscopically observed with catalytically active complexes of the enzyme with 1-deaza and 3-deaza analogs in the presence of 1,2-propanediol, but not with complexes with the inactive analogs. Oxygen sensitivity of the enzyme-analog complexes suggests that the carbon-cobalt bond of 1-deaza and 3-deaza analogs becomes activated by the enzyme even in the absence of substrate. These results indicate that the importance of the nitrogen atoms in the adenine moiety of the coenzyme for manifestation of catalytic function and for activation of the carbon-cobalt bond decreases in the following order: N-7 greater than 6-NH2 greater than N-3 greater than N-1. The dissociation constant for 5'-deoxyadenosine determined by equilibrium dialysis at 37 degrees C was about 23 microM.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9258
1083-351X
DOI:10.1016/S0021-9258(18)67652-5