Parasitism by the Tachinid Parasitoid Exorista japonica Leads to Suppression of Basal Metabolism and Activation of Immune Response in the Host Bombyx mori

The dipteran tachinid parasitoids are important biocontrol agents, and they must survive the harsh environment and rely on the resources of the host insect to complete their larval stage. We have previously demonstrated that the parasitism by the tachinid parasitoid Exoristajaponica, a pest of the s...

Full description

Saved in:
Bibliographic Details
Published inInsects (Basel, Switzerland) Vol. 13; no. 9; p. 792
Main Authors Dai, Minli, Yang, Jin, Liu, Xinyi, Gu, Haoyi, Li, Fanchi, Li, Bing, Wei, Jing
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 31.08.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The dipteran tachinid parasitoids are important biocontrol agents, and they must survive the harsh environment and rely on the resources of the host insect to complete their larval stage. We have previously demonstrated that the parasitism by the tachinid parasitoid Exoristajaponica, a pest of the silkworm, causes pupation defects in Bombyx mori. However, the underlying mechanism is not fully understood. Here, we performed transcriptome analysis of the fat body of B. mori parasitized by E. japonica. We identified 1361 differentially expressed genes, with 394 genes up-regulated and 967 genes down-regulated. The up-regulated genes were mainly associated with immune response, endocrine system and signal transduction, whereas the genes related to basal metabolism, including energy metabolism, transport and catabolism, lipid metabolism, amino acid metabolism and carbohydrate metabolism were down-regulated, indicating that the host appeared to be in poor nutritional status but active in immune response. Moreover, by time-course gene expression analysis we found that genes related to amino acid synthesis, protein degradation and lipid metabolism in B. mori at later parasitization stages were inhibited. Antimicrobial peptides including Cecropin A, Gloverin and Moricin, and an immulectin, CTL11, were induced. These results indicate that the tachinid parasitoid perturbs the basal metabolism and induces the energetically costly immunity of the host, and thus leading to incomplete larval–pupal ecdysis of the host. This study provided insights into how tachinid parasitoids modify host basal metabolism and immune response for the benefit of developing parasitoid larvae.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally to this work.
ISSN:2075-4450
2075-4450
DOI:10.3390/insects13090792