Transparent conducting ZnO-CdO mixed oxide thin films grown by the sol-gel method

[Display omitted] Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns c...

Full description

Saved in:
Bibliographic Details
Published inJournal of colloid and interface science Vol. 487; pp. 378 - 387
Main Authors Pathak, Trilok K., Rajput, Jeevitesh K., Kumar, Vinod, Purohit, L.P., Swart, H.C., Kroon, R.E.
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 01.02.2017
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:[Display omitted] Mixed oxides of zinc and cadmium with different proportions were deposited on ordinary glass substrates using the sol-gel spin coating method under optimized deposition conditions using zinc acetate dihydrate and cadmium acetate dihydrate as precursors. X-ray diffraction patterns confirmed the polycrystalline nature of the films. A combination of cubic CdO and hexagonal wurtzite ZnO phases was observed. The oxidation states of Zn, Cd and O in the deposited films were determined by X-ray photoelectron spectroscopic studies. Surface morphology was studied by scanning electron microscopy and atomic force microscopy. The compositional analysis of the thin films was studied by secondary ion mass spectroscopy. The transmittance of the thin films was measured in the range 300–800nm and the optical bandgap was calculated using Tauc’s plot method. The bandgap decreased from 3.15eV to 2.15eV with increasing CdO content. The light emission properties of the ZnO:CdO thin films were studied by photoluminescence spectra recorded at room temperature. The current-voltage characteristics were also assessed and showed ohmic behaviour. The resistance decreased with increasing CdO content.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2016.10.062