Synthesis and characterization of the crystal structure, the magnetic and the electrochemical properties of the new fluorophosphate LiNaFe[PO4]F
The new compound LiNaFe[PO(4)]F was synthesized by a solid state reaction route, and its crystal structure was determined using neutron powder diffraction data. LiNaFe[PO(4)]F was characterized by (57)Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat capacity, and electrochemical mea...
Saved in:
Published in | Dalton transactions : an international journal of inorganic chemistry Vol. 41; no. 38; pp. 11692 - 11699 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
14.10.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The new compound LiNaFe[PO(4)]F was synthesized by a solid state reaction route, and its crystal structure was determined using neutron powder diffraction data. LiNaFe[PO(4)]F was characterized by (57)Fe Mössbauer spectroscopy, magnetic susceptibility, specific heat capacity, and electrochemical measurements. LiNaFe[PO(4)]F crystallizes with orthorhombic symmetry, space group Pnma, with a = 10.9568(6) Å, b = 6.3959(3) Å, c = 11.4400(7) Å, V = 801.7(1) Å(3) and Z = 8. The structure consists of edge-sharing FeO(4)F(2) octahedra forming FeFO(3) chains running along the b axis. These chains are interlinked by PO(4) tetrahedra forming a three-dimensional framework with the tunnels and the cavities filled by the well-ordered sodium and lithium atoms, respectively. The specific heat and magnetization measurements show that LiNaFe[PO(4)]F undergoes a three-dimensional antiferromagnetic ordering at T(N) = 20 K. The neutron powder diffraction measurements at 3 K show that each FeFO(3) chain along the b-direction is ferromagnetic (FM), while these FM chains are antiferromagnetically coupled along the a and c-directions with a non-collinear spin arrangement. The galvanometric cycling showed that without any optimization, one mole of alkali metal is extractable between 1.0 V and 5.0 V vs. Li(+)/Li with a discharge capacity between 135 and 145 mAh g(-1). |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c2dt30739a |