Coherent mixing of mechanical excitations in nano-optomechanical structures

The combination of the large per-photon optical force and small motional mass achievable in nanocavity optomechanical systems results in strong dynamical back-action between mechanical motion and the cavity light field. In this Article, we study the optical control of mechanical motion within two di...

Full description

Saved in:
Bibliographic Details
Published inNature photonics Vol. 4; no. 4; pp. 236 - 242
Main Authors Painter, Oskar, Lin, Qiang, Rosenberg, Jessie, Chang, Darrick, Camacho, Ryan, Eichenfield, Matt, Vahala, Kerry J
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.04.2010
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The combination of the large per-photon optical force and small motional mass achievable in nanocavity optomechanical systems results in strong dynamical back-action between mechanical motion and the cavity light field. In this Article, we study the optical control of mechanical motion within two different nanocavity structures, a zipper nanobeam photonic crystal cavity and a double-microdisk whispering-gallery resonator. The strong optical gradient force within these cavities is shown to introduce significant optical rigidity into the structure, with the dressed mechanical states renormalized into optically bright and optically dark modes of motion. With the addition of internal mechanical coupling between mechanical modes, a form of optically controlled mechanical transparency is demonstrated in analogy to electromagnetically induced transparency of three-level atomic media. Based upon these measurements, a proposal for coherently transferring radio-frequency/microwave signals between the optical field and a long-lived dark mechanical state is described. Nanocavity optomechanical systems can exhibit strong dynamical back-action between mechanical motion and the cavity light field. Here, optical control of mechanical motion within two different nanocavity structures is demonstrated. A form of optically controlled mechanical transparency is also demonstrated, which is analogous to electromagnetically induced transparency.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1749-4885
1749-4893
DOI:10.1038/nphoton.2010.5