Interactions of flicker and motion

We present a series of novel observations about interactions between flicker and motion that lead to three distinct perceptual effects. We use the term flicker to describe alternating changes in a stimulus’ luminance or color (i.e. a circle that flickers from black to white and visa-versa). When obj...

Full description

Saved in:
Bibliographic Details
Published inVision research (Oxford) Vol. 155; pp. 24 - 34
Main Authors Erlikhman, Gennady, Gutentag, Sion, Blair, Christopher D., Caplovitz, Gideon P.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.02.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We present a series of novel observations about interactions between flicker and motion that lead to three distinct perceptual effects. We use the term flicker to describe alternating changes in a stimulus’ luminance or color (i.e. a circle that flickers from black to white and visa-versa). When objects flicker, three distinct phenomena can be observed: (1) Flicker Induced Motion (FLIM) in which a single, stationary object, appears to move when it flickers at certain rates; (2) Flicker Induced Motion Suppression (FLIMS) in which a moving object appears to be stationary when it flickers at certain rates, and (3) Flicker-Induced Induced-Motion (FLIIM) in which moving objects that are flickering induce another flickering stationary object to appear to move. Across four psychophysical experiments, we characterize key stimulus parameters underlying these flicker-motion interactions. Interactions were strongest in the periphery and at flicker frequencies above 10 Hz. Induced motion occurred not just for luminance flicker, but for isoluminant color changes as well. We also found that the more physically moving objects there were, the more motion induction to stationary objects occurred. We present demonstrations that the effects reported here cannot be fully accounted for by eye movements: we show that the perceived motion of multiple stationary objects that are induced to move via flicker can appear to move independently and in random directions, whereas eye movements would have caused all of the objects to appear to move coherently. These effects highlight the fundamental role of spatiotemporal dynamics in the representation of motion and the intimate relationship between flicker and motion.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0042-6989
1878-5646
DOI:10.1016/j.visres.2018.12.005