Complex and hierarchical micelle architectures from diblock copolymers using living, crystallization-driven polymerizations

Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core–corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core...

Full description

Saved in:
Bibliographic Details
Published inNature materials Vol. 8; no. 2; pp. 144 - 150
Main Authors Winnik, Mitchell A, Manners, Ian, Gädt, Torben, Ieong, Nga Sze, Cambridge, Graeme
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.02.2009
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Block copolymers consist of two or more chemically distinct polymer segments, or blocks, connected by a covalent link. In a selective solvent for one of the blocks, core–corona micelle structures are formed. We demonstrate that living polymerizations driven by the epitaxial crystallization of a core-forming metalloblock represent a synthetic tool that can be used to generate complex and hierarchical micelle architectures from diblock copolymers. The use of platelet micelles as initiators enables the formation of scarf-like architectures in which cylindrical micelle tassels of controlled length are grown from specific crystal faces. A similar process enables the fabrication of brushes of cylindrical micelles on a crystalline homopolymer substrate. Living polymerizations driven by heteroepitaxial growth can also be accomplished and are illustrated by the formation of tri- and pentablock and scarf architectures with cylinder–cylinder and platelet–cylinder connections, respectively, that involve different core-forming metalloblocks. A synthetic tool that uses living polymerizations driven by epitaxial crystallization is shown to create a range of complex micelle architectures made from diblock copolymers. Platelet micelles act as initiators for the formation of scarf-like structures with micellar tassels of controlled length, grown from specific locations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:1476-1122
1476-4660
DOI:10.1038/nmat2356