A Comparative Study of Associated Microbiota Between Pig Farm and Pig Slaughterhouse in Guangdong, China
The goal of this study was to compare the microbiota in different pig-present settings in China. Bioaerosol samples from pig farms and slaughterhouses and nasal samples from pig farmers and slaughterhouse workers were collected in Guangdong, southern China. The bacterial genomic DNA was isolated and...
Saved in:
Published in | Current microbiology Vol. 77; no. 11; pp. 3310 - 3320 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Springer Nature B.V
01.11.2020
Springer US |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The goal of this study was to compare the microbiota in different pig-present settings in China. Bioaerosol samples from pig farms and slaughterhouses and nasal samples from pig farmers and slaughterhouse workers were collected in Guangdong, southern China. The bacterial genomic DNA was isolated and subjected to 16S sequencing. The data were analyzed using QIIME2 with the DADA2 pipeline. A total of 14,923,551 clean reads and 2785 operational taxonomic units (OTUs) were obtained, which were mostly grouped into 4 phyla (Proteobacteria, Bacteroidetes, Firmicutes, and Actinobacteria) and 220 families. The microbiota richness of nasal samples in pig-present workers was higher than that of bioaerosols collected in the vicinity of the pig enclosures. There were 31.7% (620/1954) shared OTUs between pig farm bioaerosols and pig farmers which was higher than that between pig slaughterhouses and slaughterhouse workers (23.4%, 364/1553) (p < 0.001). Acinetobacter and Pseudomonas were the most abundant in pig-present bioaerosols, and Staphylococcus, Pseudomonas, and Corynebacterium were dominant bacterial genus in pig farmers. The bacterial patterns are also specific to the location of sample collected. The results suggest that bioaerosol microbiota interact with human nasal microbes in the vicinity of the pig farm enclosures, providing the basis for further analysis of microbial transmission across hosts in pig-present settings. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 0343-8651 1432-0991 1432-0991 |
DOI: | 10.1007/s00284-020-02187-w |