Functional significance of the ipsilateral hemisphere during movement of the affected hand after stroke

Previous fMRI observations have suggested increased task-related activation of the ipsilateral cerebral motor cortex in patients recovering from stroke. This is generally taken to infer an increased output from this area, although the functional relevance of this has been questioned. Here, we use di...

Full description

Saved in:
Bibliographic Details
Published inExperimental neurology Vol. 190; no. 2; pp. 425 - 432
Main Authors Serrien, Deborah J., Strens, Lucy H.A., Cassidy, Michael J., Thompson, Alan J., Brown, Peter
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.12.2004
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Previous fMRI observations have suggested increased task-related activation of the ipsilateral cerebral motor cortex in patients recovering from stroke. This is generally taken to infer an increased output from this area, although the functional relevance of this has been questioned. Here, we use directed EEG coherence to reveal whether there is increased informational flow from the ipsilateral motor cortex following motor stroke, and through correlation with degree of recovery, establish that this pattern of activity is associated with limited functional improvement. Unrecovered (n = 14), recovered (n = 11) patients and healthy subjects (n = 16) performed an isometric grip task with either hand that corresponded to 25% of individual maximum force, while EEG was recorded. For unrecovered stroke patients, most task-related information flow between the sensorimotor cortices in the low beta band of the EEG came from the ipsilateral (undamaged) hemisphere during grip with the affected hand. This was not the case when they gripped with their unaffected hand, when cortical activity was driven from the contralateral sensorimotor cortex. The latter pattern was also seen in recovered patients and controls. These findings suggest a functional role for the ipsilateral hemisphere in organizing movement of the impaired limb following stroke, but only in those patients that do not make a good functional recovery. Patients making a fuller recovery organize movement-related cortical activity from the hemisphere contralateral to movement.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0014-4886
1090-2430
DOI:10.1016/j.expneurol.2004.08.004