Structural Characterization and Expression Analysis of the Neurospora Conidiation Gene con-6

The gene con-6 of Neurospora crassa is expressed during the formation of asexual spores (conidia), but it is not expressed in mycelium. con-6 mRNA appears upon induction of conidiation and reaches high levels at the late stages of conidiation, and in mature conidia. The CON6 polypeptide and a CON6-β...

Full description

Saved in:
Bibliographic Details
Published inDevelopmental biology Vol. 160; no. 1; pp. 254 - 264
Main Authors White, Brian T., Yanofsky, Charles
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier Inc 01.11.1993
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The gene con-6 of Neurospora crassa is expressed during the formation of asexual spores (conidia), but it is not expressed in mycelium. con-6 mRNA appears upon induction of conidiation and reaches high levels at the late stages of conidiation, and in mature conidia. The CON6 polypeptide and a CON6-βGal fusion protein were present at high levels only in free conidia. Shortly after spore germination con-6 mRNA disappears and the CON6 polypeptide is degraded. CON6 is a small, hydrophilic polypeptide containing a repeat sequence; it not homologous to any known protein but has features resembling the late embryogenesis abundant proteins of maize. Inactivation of con-6 by the repeat-induced point mutation process had no demonstrable effect on formation or germination of conidia. Upstream sequence comparisons for con-6 and other con genes identified a common potential regulatory sequence, designated CRS-B. DNA mobility shift analyses with cell extracts identified a factor that bound to synthetic DNA fragments containing this sequence. This binding factor was present in mycelium but not in conidiating cultures. Experiments with independent integrated con-6′-'lacZ translational fusions revealed substantial variability of expression among transformants carrying identical fusion constructs. This variability may be due to the differential methylation of transformant DNA noted by others.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0012-1606
1095-564X
DOI:10.1006/dbio.1993.1303