Iron-oxide embedded solid lipid nanoparticles for magnetically controlled heating and drug delivery

This paper presents the development of magnetic lipid nanoparticles that could serve as controlled delivery vehicles for releasing encapsulated drugs in a desired manner. The nanoparticles are composed of multiple drugs in lipid matrices, which are solid at body temperature and melt around 45°C to 5...

Full description

Saved in:
Bibliographic Details
Published inBiomedical microdevices Vol. 10; no. 6; pp. 785 - 793
Main Authors Hsu, Ming-Huang, Su, Yu-Chuan
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.12.2008
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents the development of magnetic lipid nanoparticles that could serve as controlled delivery vehicles for releasing encapsulated drugs in a desired manner. The nanoparticles are composed of multiple drugs in lipid matrices, which are solid at body temperature and melt around 45°C to 55°C. In addition, super-paramagnetic γ-Fe 2 O 3 particles with sizes ranging from 5 to 25 nm are surface modified and dispersed uniformly in the lipid nanoparticles. In the prototype demonstration, lipid nanoparticles with average sizes between 100 and 180 nm were fabricated by high-pressure homogenization at elevated temperatures. When exposed to an alternating magnetic field of 60 kA/m at 25 kHz, a solution containing 2 g/L encapsulated γ-Fe 2 O 3 particles showed a temperature increase from 37°C to 50°C in 20 min. Meanwhile, the dissipated heat melted the surrounding lipid matrices and resulted in an accelerated release of the encapsulated drugs. Within 20 min, approximately 35% of the encapsulated drug molecules were released from the lipid nanoparticles through diffusion. As such, the presented lipid nanoparticles enable a new scheme that combines magnetic control of heating and drug delivery, which could greatly enhance the performance of encapsulated drugs.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:1387-2176
1572-8781
DOI:10.1007/s10544-008-9192-5