The nano delivery systems and applications of mRNA
The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiologica...
Saved in:
Published in | European journal of medicinal chemistry Vol. 227; p. 113910 |
---|---|
Main Authors | , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
05.01.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.
[Display omitted]
•Different mRNA delivery system has different delivery mechanisms.•Innovative materials make nano delivery system versatile.•Besides COVID-19 vaccine, mRNA has more application directions. |
---|---|
AbstractList | The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their
in vivo
applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.
Image 1 The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun. The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun. The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun. [Display omitted] •Different mRNA delivery system has different delivery mechanisms.•Innovative materials make nano delivery system versatile.•Besides COVID-19 vaccine, mRNA has more application directions. |
ArticleNumber | 113910 |
Author | Li, Yuan Yu, Peng Zhu, Tao Li, Shiqin Li, Mingyuan Wang, Haomeng Li, Meng Ma, Liqiao Zhu, Ali Li, Weihong Deng, Jie Jia, Lin |
Author_xml | – sequence: 1 givenname: Mingyuan surname: Li fullname: Li, Mingyuan organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China – sequence: 2 givenname: Yuan surname: Li fullname: Li, Yuan organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China – sequence: 3 givenname: Shiqin surname: Li fullname: Li, Shiqin organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China – sequence: 4 givenname: Lin surname: Jia fullname: Jia, Lin organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China – sequence: 5 givenname: Haomeng surname: Wang fullname: Wang, Haomeng organization: CanSino Biologics Inc., Tianjin, 300301, China – sequence: 6 givenname: Meng surname: Li fullname: Li, Meng organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China – sequence: 7 givenname: Jie surname: Deng fullname: Deng, Jie organization: CanSino Biologics Inc., Tianjin, 300301, China – sequence: 8 givenname: Ali surname: Zhu fullname: Zhu, Ali organization: CanSino Biologics Inc., Tianjin, 300301, China – sequence: 9 givenname: Liqiao surname: Ma fullname: Ma, Liqiao organization: CanSino Biologics Inc., Tianjin, 300301, China – sequence: 10 givenname: Weihong surname: Li fullname: Li, Weihong organization: CanSino Biologics Inc., Tianjin, 300301, China – sequence: 11 givenname: Peng surname: Yu fullname: Yu, Peng email: yupeng@tust.edu.cn organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China – sequence: 12 givenname: Tao surname: Zhu fullname: Zhu, Tao email: tao.zhu@cansinotech.com organization: CanSino Biologics Inc., Tianjin, 300301, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34689071$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkUtrGzEUhUVxqZ20_yCEWXYzjp7z6KJgQpoETAohWYs70p1aZkZypbHB_z6T2iltFsnqLu4534FzTsjEB4-EnDE6Z5QVF-s5rns0qzmnnM0ZEzWjH8iMlUWVC67khMwo5yJXXMgpOUlpTSlVBaWfyFTIoqppyWaEP6ww8-BDZrFzO4z7LO3TgH3KwNsMNpvOGRhc8CkLbdbf3y0-k48tdAm_HO8pefxx9XB5ky9_Xt9eLpa5kYUY8qItKyvrShjVlFZIKYC1haF1DUA5gG0ba4xSZQMFa2QrlAVQpTLMoGWKilPy_cDdbJserUE_ROj0Jroe4l4HcPr_j3cr_SvsdCXrslZqBHw9AmL4vcU06N4lg10HHsM2aa4qVY1SUY3S83-z_oa8FDUKvh0EJoaUIrbauOFPL2O06zSj-nkVvdaHVfTzKvqwymiWr8wv_HdsxwJwbHnnMOpkHPqxHhfRDNoG9zbgCZ2yqJU |
CitedBy_id | crossref_primary_10_1080_00914037_2024_2360949 crossref_primary_10_1002_btm2_10713 crossref_primary_10_1080_14760584_2023_2238807 crossref_primary_10_1016_j_jlr_2022_100273 crossref_primary_10_3390_pharmaceutics16010131 crossref_primary_10_1186_s40824_022_00292_4 crossref_primary_10_1002_advs_202404684 crossref_primary_10_1002_adhm_202401103 crossref_primary_10_1038_s41467_024_50752_9 crossref_primary_10_1134_S1068162023020152 crossref_primary_10_1016_j_ejmech_2023_115822 crossref_primary_10_1016_j_ejps_2025_107056 crossref_primary_10_1080_17425247_2025_2466767 crossref_primary_10_1016_j_biopha_2024_116691 crossref_primary_10_1002_adhm_202202590 crossref_primary_10_3390_ph16121634 crossref_primary_10_3390_ijms25031739 crossref_primary_10_3390_pharmaceutics15031009 crossref_primary_10_3390_pharmaceutics15102477 crossref_primary_10_1016_j_jconrel_2023_05_009 crossref_primary_10_1080_10408398_2023_2279687 crossref_primary_10_1007_s40259_024_00647_4 crossref_primary_10_1039_D2NA00795A crossref_primary_10_1016_j_ijpharm_2024_124514 crossref_primary_10_1080_10717544_2023_2219869 crossref_primary_10_3390_pharmaceutics13122053 crossref_primary_10_3389_fbioe_2024_1349077 crossref_primary_10_1021_jacs_4c11066 crossref_primary_10_1186_s12951_022_01517_3 crossref_primary_10_1038_s42004_024_01266_4 crossref_primary_10_1016_j_jddst_2024_105779 crossref_primary_10_1016_j_omtm_2024_101398 crossref_primary_10_25259_AJBPS_3_2022 crossref_primary_10_1016_j_jconrel_2024_05_014 crossref_primary_10_3389_fphar_2022_1090237 crossref_primary_10_3390_vaccines12070717 crossref_primary_10_1038_s41541_023_00732_9 crossref_primary_10_1016_j_ijbiomac_2024_131139 crossref_primary_10_1007_s00108_022_01325_9 crossref_primary_10_1021_acsami_4c00992 crossref_primary_10_1631_jzus_B2300077 crossref_primary_10_1016_j_bmcl_2023_129457 crossref_primary_10_1016_j_nantod_2024_102301 crossref_primary_10_1002_btm2_10579 crossref_primary_10_1093_stcltm_szad087 crossref_primary_10_1007_s00262_025_03992_7 crossref_primary_10_1186_s12943_024_02141_5 crossref_primary_10_1002_btm2_10492 crossref_primary_10_1080_21645515_2022_2040330 crossref_primary_10_1039_D4NA00404C crossref_primary_10_3390_vaccines11020282 crossref_primary_10_3389_fbioe_2022_1053197 crossref_primary_10_3389_fimmu_2024_1509322 crossref_primary_10_3389_fmats_2022_1059184 crossref_primary_10_3390_pharmaceutics15041127 crossref_primary_10_1038_s41392_023_01561_x crossref_primary_10_31857_S013234232302015X crossref_primary_10_3390_biom15030359 crossref_primary_10_3390_pathogens13080692 crossref_primary_10_1186_s40779_023_00445_z crossref_primary_10_1016_j_jddst_2025_106782 crossref_primary_10_1007_s10544_023_00649_z crossref_primary_10_1038_s41392_022_00996_y crossref_primary_10_1002_ctm2_1384 crossref_primary_10_1039_D2TB02455A crossref_primary_10_1002_smtd_202300880 crossref_primary_10_1039_D4BM00148F crossref_primary_10_3390_pharmaceutics15010178 crossref_primary_10_1021_acsami_4c07684 crossref_primary_10_1007_s42452_023_05583_6 crossref_primary_10_1186_s12951_022_01472_z crossref_primary_10_1111_jop_13407 crossref_primary_10_3389_fimmu_2022_974433 crossref_primary_10_2174_0113816128296588240321072042 crossref_primary_10_1111_bph_16409 |
Cites_doi | 10.1038/s41598-018-31003-6 10.1038/s41392-020-00439-6 10.1080/2162402X.2016.1232237 10.1038/nrd4278 10.1016/j.jconrel.2019.10.026 10.1038/s42003-021-01728-8 10.1016/j.cellsig.2021.110037 10.3390/pharmaceutics12111042 10.1016/j.omtn.2017.07.013 10.1038/sj.gt.3302964 10.3390/ijms19030650 10.1016/j.cell.2020.07.024 10.1016/j.ymthe.2021.05.011 10.1006/jsbi.1996.0082 10.1016/j.cellimm.2020.104143 10.1056/NEJMoa2024671 10.1016/j.addr.2020.06.002 10.1016/j.ymthe.2019.02.012 10.1016/j.vaccine.2021.03.038 10.3390/vaccines7040132 10.1080/10717544.2020.1790692 10.1016/j.ejpb.2020.07.028 10.1038/d41586-021-02483-w 10.3109/10717544.2015.1038856 10.1021/acs.jpcb.5b02891 10.1208/s12249-021-02058-y 10.1016/j.atherosclerosis.2011.11.026 10.1016/j.ejmech.2019.01.007 10.1080/10717544.2020.1772409 10.1016/j.ymthe.2017.03.013 10.1021/acs.nanolett.9b04246 10.1016/j.molliq.2021.115703 10.1016/j.immuni.2020.11.009 10.1016/j.omtm.2020.05.030 10.1016/j.actbio.2019.11.022 10.1016/j.jconrel.2020.08.023 10.1161/CIR.0000000000000757 10.3390/molecules25245995 10.3390/v12121371 10.3390/pharmaceutics12121235 10.1016/j.chemphyslip.2020.104948 10.1016/j.ijpharm.2019.118798 10.1016/j.cell.2021.01.037 10.1038/d41573-020-00078-0 10.1098/rstb.2003.1373 10.1016/j.biomaterials.2018.12.019 10.2147/IJN.S198747 10.1016/j.vaccine.2020.09.079 10.1016/j.isci.2021.102424 10.1016/j.ijpharm.2021.120586 10.3389/fneur.2020.00809 10.1016/j.ijpharm.2020.120080 10.1016/j.jconrel.2021.05.040 10.1016/j.xphs.2020.12.006 10.1371/journal.pone.0201464 10.1093/nar/23.9.1495 10.1038/274923a0 10.1126/sciadv.aba1028 10.1021/acs.bioconjchem.8b00524 10.1016/j.jconrel.2016.06.007 10.1038/s41467-019-08852-4 10.1016/j.actbio.2021.06.020 10.1021/acs.bioconjchem.7b00657 10.3390/pharmaceutics13020240 10.1016/j.addr.2020.12.014 10.1016/j.bioactmat.2020.07.003 10.1016/j.ijpharm.2021.120645 10.1158/0008-5472.CAN-10-0699 10.1038/nrd.2017.243 10.1016/j.omtn.2021.03.008 10.1016/j.bbamem.2021.183627 10.1016/j.ejmech.2021.113582 10.1016/j.jconrel.2021.05.024 10.1186/s40425-019-0520-5 10.1016/j.biopha.2020.111059 10.1038/s41392-020-00364-8 10.1038/gt.2011.17 10.1056/NEJMoa1400283 10.1002/adhm.201601412 10.1016/j.jconrel.2016.12.005 10.3389/fimmu.2021.645210 10.1016/j.ijpharm.2021.120529 10.1097/CJI.0b013e3181a00068 10.1007/s13205-020-2132-7 10.1126/sciimmunol.aaw6647 10.1016/j.drudis.2013.10.011 10.1016/j.ymthe.2017.11.017 10.1016/j.ejpb.2021.03.011 10.1021/acs.molpharmaceut.0c00170 10.1016/j.jconrel.2019.10.028 10.1016/j.jconrel.2020.06.027 10.2147/PGPM.S87945 10.15585/mmwr.mm7034e3 10.1016/j.xphs.2019.12.020 10.1080/14760584.2018.1526085 10.1016/j.atherosclerosissup.2018.04.177 10.1016/j.cell.2020.06.043 10.1038/274921a0 10.1016/j.ijpharm.2021.120711 10.1016/j.jconrel.2016.02.043 10.1016/j.molliq.2021.115689 10.1016/j.jconrel.2019.04.015 10.1038/mtna.2012.28 10.1038/nbt.2436 10.1021/acs.biomac.0c00445 10.1038/natrevmats.2017.56 10.3390/nano9010067 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Masson SAS Copyright © 2021 Elsevier Masson SAS. All rights reserved. 2021 Elsevier Masson SAS. All rights reserved. 2021 Elsevier Masson SAS |
Copyright_xml | – notice: 2021 Elsevier Masson SAS – notice: Copyright © 2021 Elsevier Masson SAS. All rights reserved. – notice: 2021 Elsevier Masson SAS. All rights reserved. 2021 Elsevier Masson SAS |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1016/j.ejmech.2021.113910 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1768-3254 |
EndPage | 113910 |
ExternalDocumentID | PMC8497955 34689071 10_1016_j_ejmech_2021_113910 S0223523421007595 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATCM AAXUO ABFRF ABGSF ABJNI ABMAC ABOCM ABUDA ABYKQ ABZDS ACDAQ ACGFO ACIUM ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA J1W KOM M2Y M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSP SSU SSZ T5K ~G- 1B1 29G 53G AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION EJD FEDTE FGOYB G-2 HMS HMT HVGLF HZ~ IHE R2- RIG SCB SEW SOC SPT SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c463t-6f78d4983c5b7d3443a1f6c099aa02aadfbdcc557ba61b4f35daa575c1ced1503 |
IEDL.DBID | .~1 |
ISSN | 0223-5234 1768-3254 |
IngestDate | Thu Aug 21 17:38:17 EDT 2025 Tue Aug 05 10:32:04 EDT 2025 Wed Feb 19 02:25:35 EST 2025 Thu Apr 24 22:58:35 EDT 2025 Tue Jul 01 04:03:57 EDT 2025 Fri Feb 23 02:40:03 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | COVID-19 mRNA Material Applications Nano delivery system |
Language | English |
License | Copyright © 2021 Elsevier Masson SAS. All rights reserved. Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-6f78d4983c5b7d3443a1f6c099aa02aadfbdcc557ba61b4f35daa575c1ced1503 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC8497955 |
PMID | 34689071 |
PQID | 2585897938 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8497955 proquest_miscellaneous_2585897938 pubmed_primary_34689071 crossref_citationtrail_10_1016_j_ejmech_2021_113910 crossref_primary_10_1016_j_ejmech_2021_113910 elsevier_sciencedirect_doi_10_1016_j_ejmech_2021_113910 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-05 |
PublicationDateYYYYMMDD | 2022-01-05 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-05 day: 05 |
PublicationDecade | 2020 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | European journal of medicinal chemistry |
PublicationTitleAlternate | Eur J Med Chem |
PublicationYear | 2022 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Bell, Yang, Leung, Krissansen (bib72) 2018; 13 Emma, Laura, James (bib81) 2021; 184 Chan, Khung, Lin (bib68) 2019; 9 Zhang, Liu, Chin, Phua (bib17) 2021; 163 Qiu, Man, Liao, Kung, Chow, Lam (bib74) 2019; 314 Kowalski, Rudra, Miao, Anderson (bib22) 2019; 27 Rak, Ochałek, Gawarecka, Masnyk, Chmielewski, Chojnacki, Swiezewska, Madeja (bib33) 2020; 155 Lou, Anderluzzi, Schmidta, Woods, Gallorini, Brazzoli, Giusti, Ferlenghi, Johnson, Roberts, O'Hagan, Baudner, Perrie (bib91) 2020; 325 Leung, Tam, Chen, Hafez, Cullis (bib35) 2015; 119 Kreiter, Selmi, Diken, Koslowski, Britten, Huber (bib12) 2010; 70 Solomun, Cinar, Mapfumo, Richter, Moek, Hausig, Martin, Hoeppener, Nischang, Traeger (bib58) 2021; 593 Soliman, Alameh, Cresenzo, Buschmann, Lavertu (bib63) 2020; 109 Samaridou, Heyes, Lutwyche (bib38) 2020; 154-155 Zhang, Men, Zhang (bib103) 2019; 14 Kim, Sung, Chang, Alfeche, Leal (bib36) 2018; vol. 12 Petsch, Schnee, Vogel (bib88) 2012; 30 Mittal, Verma (bib79) 2021; 6 Gkionis, Aojula, Harris, Tirella (bib48) 2021; 604 Rizk, Tuzmen (bib24) 2017; 10 Vogel, Lambert, Kinnear, Busse, Erbar, Reuter (bib62) 2018; 26 Roshan, O'Hagan, Roberto, Baudner (bib44) 2021; 13 Choia, Leebe, Yang, Oh, Won, Han, Jeong, Kim, Kim, Kim, Cho (bib64) 2016; 235 Probst, Weide, Scheel, Pichler, Hoerr, Rammensee (bib14) 2007; 14 Kim, Choi, Lee, Lee, Lee, Sun, Kim (bib82) 2021; 17 Ostro, Giacomoni, Lavelle, Paxton, Dray (bib6) 1978; 274 Du, Li, Li, Galons, Guo, Teng, Zhang, Li, Yu (bib47) 2020; 27 Diken, Kreiter, Selmi, Britten, Huber, Türeci (bib11) 2011; 18 Weide, Pascolo, Scheel, Derhovanessian, Pflugfelder, Eigentler (bib69) 2009; 32 Zhang, Li, Deng, Zhao, Huang, Yang, Huang, Gao, Zhou, Zhang, Guo, Sun, Fan, Zu, Chen, He, Cao, Huang, Qiu, Nie, Jiang, Yan, Ye, Zhong, Xue, Zha, Zhou, Yang, Wang, Ying, Qin (bib8) 2020; 182 Kim, Eygeris, Gupta, Sahay (bib118) 2021; 170 Crommelin, Anchordoquy, Volkin, Jiskoot, Mastrobattista (bib105) 2021; 110 Lou, Koker, Lau, Hennink, Mastrobattista (bib73) 2019; 30 Dolgin (bib7) 2021; 597 Belliveau, Huft, Lin, Chen, Leung, Leaver, Wild, Lee, Taylor, Tam, Hansen, Cullis (bib37) 2012; 1 Papachristofilou, Hipp, Klinkhardt, Früh, Sebastian, Weiss, Pless, Cathomas, Hilbe, Pall, Wehler, Alt, Bischoff, Geißler, Griesinger, Kallen, Mleczek, Schröder, Scheel, Muth, Zippelius (bib96) 2019; 7 Mai, Guo, Zhao, Ma, Hou, Yang (bib55) 2020; 354 Udhayakumar, Beuckelaer, McCaffrey, McCrudden, Kirschman, Vanover (bib70) 2017; 6 LaTourette, Awasthi, Desmond, Pardi, Cohen, Weissman, Friedman (bib97) 2020; 38 Pengnam, Plainwong, Patrojanasophon, Rojanarata, Ngawhirunpat, Radchatawedchakoon, Niyomtham, Yingyongnarongkul, Opanasopit (bib31) 2020; 573 Nanduri, Pilishvili, Derado, Soe, Dollard, Wu, Li, Bagchi, Dubendris, Link-Gelles, Jernigan, Budnitz, Bell, Benin, Shang, Edwards, Verani, Schrag (bib84) 2021; 34 Mai, Guo, Zhao (bib102) 2020; 54 López, Caparrós, Cabeza, Nieto, Ortiz, Perazzoli, Segura, Cañizares, Baeyens, Melguizo, Prados (bib101) 2021; 133 Korber, Fischer, Gnanakaran (bib80) 2020; 182 Pardi, Hogan, Porter, Weissman (bib92) 2018; 17 Hajj, Whitehead (bib16) 2017; 2 Kose, Fox, Sapparapu, Bombardi, Ennekoon, Silva, Elbashir, Theisen, Narayanan, Ciaramella, Himansu, Diamond, Crowe (bib94) 2019; 4 Dimitriadis (bib5) 1978; 274 Schoenmaker, Witzigmann, Kulkarni, Verbeke, Kersten, Jiskoot, Crommelin (bib39) 2021; 601 Wang, Zuroske, Watts (bib107) 2020; 19 Kyte, Aamdal, Dueland, Sæbøe, Inderberg, Madsbu (bib13) 2016; 5 Yang, Lia, Wang (bib43) 2020; 5 Blakney, Abdouni, Yilmaz, Liu, McKay, Bouton (bib61) 2020; 21 Gao, Zhang, Feng, Liu (bib115) 2021; 131 Meo, Bukhari, Akram, Meo, Klonoff (bib83) 2021; 25 Li, Du, Guo, Teng, Meng, Sun, Li, Yu, Galons (bib46) 2019; 164 Rosenbaum, Tchitchek, Joly, Pozo, Stimmer, Langlois, Hocini, Gosse, Pejoski, Cosma, Beignon, Bosquet, Levy, Grand, Martinon (bib87) 2021; 12 Armbruster, Jasny, Petsch (bib89) 2019; 7 Dhaliwal, Fan, Kim, Amiji (bib114) 2020; 17 Roloff, Nelles, Thompson, Yeo, Gianneschi (bib67) 2018; 29 Mai, Guo, Zhao, Ma, Hou, Yang (bib104) 2020; 354 Corbett, Flynn, Foulds, Francica, Barnum, Werner, Flach, O'Connell, Bock, Minai (bib86) 2020; 383 Zhang, Men, Zhang, Zhang, Yang, Duan (bib116) 2019; 14 Nimrat, Inderbir, Urooj, Harshan, Shreya, Mayur (bib78) 2021; 22 Koitabashi, Nagumo, Nakao, Machida, Yoshida, Kato (bib25) 2021; 1863 Li, Zhang, Dong (bib21) 2019; 11 Billingsley, Singh, Ravikumar, Zhang, June, Mitchell (bib42) 2020; 20 Satoa, Okabea, Notea, Hashiba, Maeki, Tokeshi, Harashima (bib32) 2020; 102 Li, Zhou, Yu, Cai, Yang, Kuang, Liu, He, Wang (bib50) 2021; 335 Alboushi, Hackett, Naeli, Bakhti, Jafarnejad (bib1) 2021; 84 Takata, Shimizu, Kawaguchi, Ueda, Elsadek, Ando, Ishima, Ishida (bib52) 2021; 601 Davies, Hovdal, Edmunds, Nordberg, Dahlén, Dabkowska, Arteta, Radulescu, Kjellman, Höijer, Seeliger, Holmedal, Andihn, Bergenhem, Sandinge, Johansson, Hultin, Johansson, Lindqvist, Björsson, Jing, Bartesaghi, Lindfors, Andersson (bib41) 2021; 24 Huang, Zhang, Yang, Xiao, Zheng, Song (bib57) 2021; 335 Baskararaj, Panneerselvam, Govindaraj, Arunachalam, Parasuraman, Pandian, Sankaranarayanan, Mohan, Palanisamy, Ravishankar, Kunjiappan (bib28) 2020; 10 Michel, Luft, Abraham, Reinhardt, Medina, Kurz, Schaller, Adali, Schlensak, Peter, Wendel, Wang, Krajewski (bib53) 2017; 8 Zhang, Tang, Tian, Jia, Hu, Zhou, Ding, Xu, Yang (bib56) 2020; 328 Chiper, Tounsi, Kole, Kichler, Zuber (bib65) 2017; 246 Kuznetsova, Vasileva, Gaynanova, Pavlov, Sapunova, Voloshina, Sibgatullin, Samigullin, Petrov, Zakharova, Sinyashin (bib54) 2021; 330 Melčák, Raška (bib3) 1996; 117 Brenner (bib4) 2004; 359 Diamond, Rosa, Chiuppesi, Contreras, Dadwal, Wussow, Bautista, Nakamura, Zaia (bib93) 2018; 17 Moriya, Kitagawa, Hayakawa, Hemmi, Kaisho, Ueha, Ikebuchi, Yasuda, Nakanishi, Honda, Matsushima, Kabashima, Ueda, Kusumoto, Chtanova, Tomura (bib98) 2021; 24 Jarzebska, Lauchli, Iselin, French, Johansen, Guenova, Kündig, Pascolo (bib19) 2020; 27 Ferri, Tibolla, Pirillo (bib109) 2012; 220 Knudson, Peixoto, Muramatsu, Stotesbury, Tang, Lin, Tam, Weissman, Pardi, Sigal (bib9) 2021; 29 Guimaraes, Zhang, Spektor, Tan, Chung, Billingsley, Mayta, Riley, Wang, Wilson, Mitchell (bib26) 2019; 316 Zhang, Leal, Soto, Smyth, Ghosh (bib45) 2020; 12 Anttila, Saraste, Knuuti (bib111) 2020; 18 Tombácz, Laczkó, Shahnawaz, Muramatsu, Natesan, Yadegari, Papp, Alameh, Shuvaev, Mui, Tam, Muzykantov, Pardi, Weissman, Parhiz (bib30) 2021; S1525-0016 Drescher, Hoogevest (bib29) 2020; 12 Patel, Ryals, Weller, Pennesi, Sahay (bib112) 2019; 302 Sahin, Karikó, Türeci (bib15) 2014; 13 Anderson, Gropman, Mons, Stratakis, Gandjbakhche (bib95) 2020; 11 Rosa, Prazeres, Azevedo, Marques (bib18) 2021; 39 Ramireza, Orth, Pires, Zawadzki, Freitas (bib49) 2021; 330 Castanha, Marques (bib90) 2020; 12 Jabali, Farshbaf, Walker, Hemmati, Fatahi, Milani, Sarfraz, Valizadeh (bib51) 2021; 602 Cullis, Hope (bib23) 2017; 25 Aguado, Castejón, Pascual, Gascón, Rodríguez, Aspiazu (bib40) 2020; 25 Jahn, Stavis, Hong, Vreeland, Devoe, Gaitan (bib34) 2010; vol. 4 Gan, Carlsson (bib110) 2019; 10 Coppin, Leclerc, Vincent, Porchet, Pigny (bib20) 2021; 19 Coolen, Lacroix, Mercier, Delaune, Monge, Exposito (bib71) 2019; 195 Inoh, Hirose, Yokoi, Yokawa, Furuno (bib100) 2020; 231 Li, Zhao, Fu, Li, Gong, Zhang (bib60) 2016; 228 Li, Goedegebuure, Gillanders (bib99) 2020; 5 Lederer, Castaño, Atria, Oguin, Wang, Manzoni, Muramatsu, Hogan, Amanat, Cherubin, Lundgreen, Tam, Fan, Eisenlohr, Maillard, Weissman, Bates, Krammer, Sempowski, Pardi, Locci (bib85) 2020; 53 Horiuchi, Lai, Yamazaki, Nakamura, Ohkawa, Yano, Kameda, Okubo, Shimano, Hagihara, Tohda, Tozuka (bib27) 2018; 32 Johanning, Conry, LoBuglio, Wright, Sumerel, Pike (bib10) 1995; 23 Guo, Zhang, He, Jiang, Tian, Li, Liu, Wang, Sun (bib66) 2021; 222 Virani, Alonso, Benjamin (bib106) 2020; 141 Munson, O'Driscoll, Silva, Lázaro-Ibáñez, Gallud, Wilson, Collén, Esbjörner, Sabirsh (bib117) 2021; 4 Zhao, Li, Zhang, Gong, Sun (bib59) 2016; 23 Gaudet, Alexander, Baker (bib108) 2015; 373 Coolen, Lacroix, Gouy, Delaune, Monge, Exposito, Verrier (bib75) 2019; 195 Josephson, Ricardo, Szostak (bib2) 2014; 19 Zhang, Li, Deng, Zhao, Huang, Yang, Huang, Gao, Zhou, Zhang, Guo, Sun, Fan, Zu, Chen, He, Cao, Huang, Qiu, Nie, Jiang, Yan, Ye, Zhong, Xue, Zha, Zhou, Yang, Wang, Ying, Qin (bib77) 2020; 182 Öhlund, Arriaza, Zusinaite, Szurgot, Männik, Kraus, Ustav, Merits, Esteban, Liljeström, Ljungberg (bib76) 2018; 8 Riley, Kashyap, Billingsley, White, Alameh, Bose, Zoltick, Li, Zhang, Cheng, Weissman, Peranteau, Mitchell (bib113) 2021; 7 Sahin (10.1016/j.ejmech.2021.113910_bib15) 2014; 13 Rosa (10.1016/j.ejmech.2021.113910_bib18) 2021; 39 Zhang (10.1016/j.ejmech.2021.113910_bib77) 2020; 182 Chan (10.1016/j.ejmech.2021.113910_bib68) 2019; 9 Nanduri (10.1016/j.ejmech.2021.113910_bib84) 2021; 34 Du (10.1016/j.ejmech.2021.113910_bib47) 2020; 27 Mittal (10.1016/j.ejmech.2021.113910_bib79) 2021; 6 Patel (10.1016/j.ejmech.2021.113910_bib112) 2019; 302 Coolen (10.1016/j.ejmech.2021.113910_bib75) 2019; 195 Nimrat (10.1016/j.ejmech.2021.113910_bib78) 2021; 22 Dimitriadis (10.1016/j.ejmech.2021.113910_bib5) 1978; 274 Solomun (10.1016/j.ejmech.2021.113910_bib58) 2021; 593 Huang (10.1016/j.ejmech.2021.113910_bib57) 2021; 335 Samaridou (10.1016/j.ejmech.2021.113910_bib38) 2020; 154-155 Guo (10.1016/j.ejmech.2021.113910_bib66) 2021; 222 Takata (10.1016/j.ejmech.2021.113910_bib52) 2021; 601 Zhang (10.1016/j.ejmech.2021.113910_bib116) 2019; 14 Kyte (10.1016/j.ejmech.2021.113910_bib13) 2016; 5 Li (10.1016/j.ejmech.2021.113910_bib21) 2019; 11 Choia (10.1016/j.ejmech.2021.113910_bib64) 2016; 235 Ostro (10.1016/j.ejmech.2021.113910_bib6) 1978; 274 Zhang (10.1016/j.ejmech.2021.113910_bib8) 2020; 182 Corbett (10.1016/j.ejmech.2021.113910_bib86) 2020; 383 Johanning (10.1016/j.ejmech.2021.113910_bib10) 1995; 23 Satoa (10.1016/j.ejmech.2021.113910_bib32) 2020; 102 Gkionis (10.1016/j.ejmech.2021.113910_bib48) 2021; 604 Michel (10.1016/j.ejmech.2021.113910_bib53) 2017; 8 Knudson (10.1016/j.ejmech.2021.113910_bib9) 2021; 29 Roshan (10.1016/j.ejmech.2021.113910_bib44) 2021; 13 Zhang (10.1016/j.ejmech.2021.113910_bib103) 2019; 14 Belliveau (10.1016/j.ejmech.2021.113910_bib37) 2012; 1 Castanha (10.1016/j.ejmech.2021.113910_bib90) 2020; 12 Anderson (10.1016/j.ejmech.2021.113910_bib95) 2020; 11 Guimaraes (10.1016/j.ejmech.2021.113910_bib26) 2019; 316 Josephson (10.1016/j.ejmech.2021.113910_bib2) 2014; 19 Li (10.1016/j.ejmech.2021.113910_bib50) 2021; 335 Rizk (10.1016/j.ejmech.2021.113910_bib24) 2017; 10 Leung (10.1016/j.ejmech.2021.113910_bib35) 2015; 119 Probst (10.1016/j.ejmech.2021.113910_bib14) 2007; 14 Yang (10.1016/j.ejmech.2021.113910_bib43) 2020; 5 Korber (10.1016/j.ejmech.2021.113910_bib80) 2020; 182 Papachristofilou (10.1016/j.ejmech.2021.113910_bib96) 2019; 7 Lou (10.1016/j.ejmech.2021.113910_bib91) 2020; 325 Gan (10.1016/j.ejmech.2021.113910_bib110) 2019; 10 Drescher (10.1016/j.ejmech.2021.113910_bib29) 2020; 12 Öhlund (10.1016/j.ejmech.2021.113910_bib76) 2018; 8 Rosenbaum (10.1016/j.ejmech.2021.113910_bib87) 2021; 12 Kuznetsova (10.1016/j.ejmech.2021.113910_bib54) 2021; 330 Brenner (10.1016/j.ejmech.2021.113910_bib4) 2004; 359 Zhang (10.1016/j.ejmech.2021.113910_bib45) 2020; 12 Jahn (10.1016/j.ejmech.2021.113910_bib34) 2010; vol. 4 Chiper (10.1016/j.ejmech.2021.113910_bib65) 2017; 246 Cullis (10.1016/j.ejmech.2021.113910_bib23) 2017; 25 Blakney (10.1016/j.ejmech.2021.113910_bib61) 2020; 21 Kim (10.1016/j.ejmech.2021.113910_bib82) 2021; 17 Schoenmaker (10.1016/j.ejmech.2021.113910_bib39) 2021; 601 Vogel (10.1016/j.ejmech.2021.113910_bib62) 2018; 26 Moriya (10.1016/j.ejmech.2021.113910_bib98) 2021; 24 López (10.1016/j.ejmech.2021.113910_bib101) 2021; 133 Pengnam (10.1016/j.ejmech.2021.113910_bib31) 2020; 573 Mai (10.1016/j.ejmech.2021.113910_bib55) 2020; 354 Coppin (10.1016/j.ejmech.2021.113910_bib20) 2021; 19 Pardi (10.1016/j.ejmech.2021.113910_bib92) 2018; 17 Munson (10.1016/j.ejmech.2021.113910_bib117) 2021; 4 Billingsley (10.1016/j.ejmech.2021.113910_bib42) 2020; 20 Inoh (10.1016/j.ejmech.2021.113910_bib100) 2020; 231 Kim (10.1016/j.ejmech.2021.113910_bib36) 2018; vol. 12 Anttila (10.1016/j.ejmech.2021.113910_bib111) 2020; 18 Davies (10.1016/j.ejmech.2021.113910_bib41) 2021; 24 Kowalski (10.1016/j.ejmech.2021.113910_bib22) 2019; 27 Baskararaj (10.1016/j.ejmech.2021.113910_bib28) 2020; 10 Ramireza (10.1016/j.ejmech.2021.113910_bib49) 2021; 330 Lou (10.1016/j.ejmech.2021.113910_bib73) 2019; 30 Zhao (10.1016/j.ejmech.2021.113910_bib59) 2016; 23 Ferri (10.1016/j.ejmech.2021.113910_bib109) 2012; 220 Udhayakumar (10.1016/j.ejmech.2021.113910_bib70) 2017; 6 Armbruster (10.1016/j.ejmech.2021.113910_bib89) 2019; 7 Zhang (10.1016/j.ejmech.2021.113910_bib17) 2021; 163 Horiuchi (10.1016/j.ejmech.2021.113910_bib27) 2018; 32 Riley (10.1016/j.ejmech.2021.113910_bib113) 2021; 7 Jarzebska (10.1016/j.ejmech.2021.113910_bib19) 2020; 27 Li (10.1016/j.ejmech.2021.113910_bib46) 2019; 164 Tombácz (10.1016/j.ejmech.2021.113910_bib30) 2021; S1525-0016 Alboushi (10.1016/j.ejmech.2021.113910_bib1) 2021; 84 Diken (10.1016/j.ejmech.2021.113910_bib11) 2011; 18 Koitabashi (10.1016/j.ejmech.2021.113910_bib25) 2021; 1863 Roloff (10.1016/j.ejmech.2021.113910_bib67) 2018; 29 Gao (10.1016/j.ejmech.2021.113910_bib115) 2021; 131 Kim (10.1016/j.ejmech.2021.113910_bib118) 2021; 170 Jabali (10.1016/j.ejmech.2021.113910_bib51) 2021; 602 Coolen (10.1016/j.ejmech.2021.113910_bib71) 2019; 195 Gaudet (10.1016/j.ejmech.2021.113910_bib108) 2015; 373 Dolgin (10.1016/j.ejmech.2021.113910_bib7) 2021; 597 Rak (10.1016/j.ejmech.2021.113910_bib33) 2020; 155 Zhang (10.1016/j.ejmech.2021.113910_bib56) 2020; 328 Petsch (10.1016/j.ejmech.2021.113910_bib88) 2012; 30 Weide (10.1016/j.ejmech.2021.113910_bib69) 2009; 32 Diamond (10.1016/j.ejmech.2021.113910_bib93) 2018; 17 Hajj (10.1016/j.ejmech.2021.113910_bib16) 2017; 2 Meo (10.1016/j.ejmech.2021.113910_bib83) 2021; 25 Lederer (10.1016/j.ejmech.2021.113910_bib85) 2020; 53 Aguado (10.1016/j.ejmech.2021.113910_bib40) 2020; 25 Kreiter (10.1016/j.ejmech.2021.113910_bib12) 2010; 70 Kose (10.1016/j.ejmech.2021.113910_bib94) 2019; 4 Crommelin (10.1016/j.ejmech.2021.113910_bib105) 2021; 110 Emma (10.1016/j.ejmech.2021.113910_bib81) 2021; 184 Li (10.1016/j.ejmech.2021.113910_bib60) 2016; 228 Mai (10.1016/j.ejmech.2021.113910_bib102) 2020; 54 LaTourette (10.1016/j.ejmech.2021.113910_bib97) 2020; 38 Mai (10.1016/j.ejmech.2021.113910_bib104) 2020; 354 Soliman (10.1016/j.ejmech.2021.113910_bib63) 2020; 109 Dhaliwal (10.1016/j.ejmech.2021.113910_bib114) 2020; 17 Melčák (10.1016/j.ejmech.2021.113910_bib3) 1996; 117 Bell (10.1016/j.ejmech.2021.113910_bib72) 2018; 13 Qiu (10.1016/j.ejmech.2021.113910_bib74) 2019; 314 Virani (10.1016/j.ejmech.2021.113910_bib106) 2020; 141 Li (10.1016/j.ejmech.2021.113910_bib99) 2020; 5 Wang (10.1016/j.ejmech.2021.113910_bib107) 2020; 19 |
References_xml | – volume: 1863 start-page: 183627 year: 2021 ident: bib25 article-title: Acidic pH-induced changes in lipid nanoparticle membrane packing publication-title: BBA - Biomembranes – volume: 9 start-page: 67 year: 2019 ident: bib68 article-title: Preparation of messenger RNA nanomicelles via non-cytotoxic PEG-polyamine nanocomplex for intracerebroventicular delivery: a proof-of-concept study in mouse models, publication-title: Nanomaterials – volume: 163 start-page: 179 year: 2021 end-page: 187 ident: bib17 article-title: Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination publication-title: Eur. J. Pharm. Biopharm – volume: 184 start-page: 1171 year: 2021 end-page: 1187 ident: bib81 article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity publication-title: Cell – volume: 18 start-page: 702 year: 2011 end-page: 708 ident: bib11 article-title: Selective uptake of naked vaccine RNA by dendritic cells is driven by micropinocytosis and abrogated upon DC maturation publication-title: Gene Ther. – volume: 13 year: 2018 ident: bib72 article-title: mRNA transfection by a Xentryprotamine cell-penetrating peptide is enhanced by TLR antagonist E6446 publication-title: PLoS One – volume: 593 start-page: 120080 year: 2021 ident: bib58 article-title: Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery publication-title: Int. J. Pharm. – volume: 383 start-page: 1544 year: 2020 end-page: 1555 ident: bib86 article-title: Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates publication-title: N. Engl. J. Med. – volume: 11 start-page: 809 year: 2020 ident: bib95 article-title: Hemodynamics of prefrontal cortex in ornithine transcarbamylase deficiency: a twin case study publication-title: Front. Neurol. – volume: 182 start-page: 1271 year: 2020 end-page: 1283 ident: bib77 article-title: A thermostable mRNA vaccine against COVID-19 publication-title: Cell – volume: 119 start-page: 8698 year: 2015 end-page: 8706 ident: bib35 article-title: Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems publication-title: J. Phys. Chem. B – volume: 5 year: 2016 ident: bib13 article-title: Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells publication-title: OncoImmunology – volume: 14 start-page: 1175 year: 2007 end-page: 1180 ident: bib14 article-title: Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent publication-title: Gene Ther. – volume: 601 start-page: 120529 year: 2021 ident: bib52 article-title: Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: a possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies, Int publication-title: J. Pharm. (Lahore) – volume: 19 start-page: 441 year: 2020 end-page: 442 ident: bib107 article-title: RNA therapeutics on the rise publication-title: Nat. Rev. Drug Discov. – volume: 195 start-page: 23 year: 2019 end-page: 37 ident: bib71 article-title: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation publication-title: Biomaterials – volume: 5 start-page: 251 year: 2020 ident: bib99 article-title: Cancer vaccines: shared tumor antigens return to the spotlight publication-title: Signal. Transduct. Target. Ther. – volume: 109 start-page: 1581 year: 2020 end-page: 1593 ident: bib63 article-title: Efficiency of chitosan/hyaluronan-based mRNA delivery systems in vitro: influence of composition and structure publication-title: J. Pharm. Sci. – volume: 25 start-page: 1663 year: 2021 end-page: 1669 ident: bib83 article-title: COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 601 start-page: 120586 year: 2021 ident: bib39 article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability publication-title: Int. J. Pharm. – volume: 18 start-page: 464 year: 2020 end-page: 472 ident: bib111 article-title: Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: design of a phase 2a clinical trial publication-title: Mol. Ther. Methods Clin. Dev. – volume: 274 start-page: 921 year: 1978 end-page: 923 ident: bib6 article-title: Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line publication-title: Nature – volume: 164 start-page: 640 year: 2019 end-page: 653 ident: bib46 article-title: Composition design and medical application of liposomes publication-title: Euro. J. Med. Chem. – volume: 335 start-page: 449 year: 2021 end-page: 456 ident: bib57 article-title: The investigation of mRNA vaccines formulated in liposomes, administrated in multiple routes against SARS-CoV-2 publication-title: J. Contr. Release – volume: 604 start-page: 120711 year: 2021 ident: bib48 article-title: Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics publication-title: Int. J. Pharm. – volume: 359 start-page: 153 year: 2004 end-page: 154 ident: bib4 article-title: Replicating and reshaping DNA: a celebration of the jubilee of the double helix publication-title: Perspect. Philos. Trans. R. Soc. Lond. B. Biol. Sci. – volume: 12 start-page: 1042 year: 2020 ident: bib45 article-title: Aerosolizable lipid nanoparticles for pulmonary delivery of mRNA through design of experiments publication-title: Pharmaceutics – volume: vol. 4 start-page: 2077 year: 2010 end-page: 2087 ident: bib34 publication-title: Microfluidic Mixing and the Formation of Nanoscale Lipid Vesicles – volume: 6 start-page: 1601412 year: 2017 ident: bib70 article-title: Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide publication-title: Adv. Healthc. Mater – volume: 170 start-page: 83 year: 2021 end-page: 112 ident: bib118 article-title: Self-assembled mRNA vaccines publication-title: Adv. Drug Deliv. Rev. – volume: 316 start-page: 404 year: 2019 end-page: 417 ident: bib26 article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening publication-title: J. Contr. Release – volume: 30 start-page: 1210 year: 2012 end-page: 1216 ident: bib88 article-title: Protective effica-cy of in vitro synthesized, specific mRNA vaccines against infl-uenza A virus infection publication-title: Nat. Biotechnol. – volume: 182 start-page: 1271 year: 2020 end-page: 1283 ident: bib8 article-title: A thermostable mRNA vaccine against COVID-19, publication-title: Cell – volume: 1 year: 2012 ident: bib37 article-title: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA publication-title: Mol. Ther. Nucleic Acids – volume: 573 year: 2020 ident: bib31 article-title: Effect of hydrophobic tails of plier-like cationic lipids on nucleic acid delivery and intracellular trafficking publication-title: Int. J. Pharmaceut. – volume: 231 start-page: 104948 year: 2020 ident: bib100 article-title: Effects of lipid composition in cationic liposomes on suppression of mast cell activation publication-title: Chem. Phys. Lipids – volume: 26 start-page: 446 year: 2018 end-page: 455 ident: bib62 article-title: Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses publication-title: Mol. Ther. – volume: 102 start-page: 341 year: 2020 end-page: 350 ident: bib32 article-title: Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles publication-title: Acta. Biomater. – volume: 325 start-page: 370 year: 2020 end-page: 379 ident: bib91 article-title: Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: the impact of cationic lipid selection, publication-title: J. Contr. Release – volume: 7 start-page: 38 year: 2019 ident: bib96 article-title: Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer publication-title: J. Immunother. Canc. – volume: 328 start-page: 210 year: 2020 end-page: 221 ident: bib56 article-title: DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine publication-title: J. Contr. Release – volume: 23 start-page: 1495 year: 1995 end-page: 1501 ident: bib10 article-title: A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo publication-title: Nucleic. Acids. Res. – volume: 12 start-page: 1371 year: 2020 ident: bib90 article-title: A glimmer of hope: recent updates and future challenges in Zika vaccine development, publication-title: Viruses – volume: 25 start-page: 1467 year: 2017 end-page: 1475 ident: bib23 article-title: Lipid nanoparticle systems for enabling gene therapies publication-title: Mol. Ther. – volume: 39 start-page: 2190 year: 2021 end-page: 2200 ident: bib18 article-title: mRNA vaccines manufacturing: challenges and bottlenecks publication-title: Vaccine – volume: 25 start-page: 5995 year: 2020 ident: bib40 article-title: Nucleic acid delivery by solid lipid nanoparticles containing switchable lipids: plasmid DNA vs. Messenger RNA publication-title: Molecules – volume: 354 start-page: 104143 year: 2020 ident: bib104 article-title: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity publication-title: Cell. Immunnol. – volume: 11 year: 2019 ident: bib21 article-title: Nanoscale platforms for messenger RNA delivery, Wiley publication-title: Interdiscip. Rev. Nanomed. Nanobiotechnol – volume: vol. 12 start-page: 9196 year: 2018 end-page: 9205 ident: bib36 publication-title: Microfluidics Synthesis of Gene Silencing Cubosomes – volume: 53 start-page: 1281 year: 2020 end-page: 1295 ident: bib85 article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody, generation publication-title: Immunity – volume: 27 start-page: 836 year: 2020 end-page: 847 ident: bib47 article-title: F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia publication-title: Drug. Deliv. – volume: 6 start-page: 11 year: 2021 ident: bib79 article-title: Connections between biomechanics and higher infectivity: a tale of the D614G mutation in the SARS-CoV-2 spike protein publication-title: Signal. Transduct. Target. Ther. – volume: 34 start-page: 1163 year: 2021 end-page: 1166 ident: bib84 article-title: Effectiveness of pfizer-BioNTech and Moderna vaccines in preventing SARS-CoV-2 infection among nursing home residents before and during widespread circulation of the SARS-CoV-2 B.1.617.2 (delta) variant - national healthcare safety network publication-title: MMWR. Morb. Mortal. Wkly. Rep. – volume: 228 start-page: 9 year: 2016 end-page: 19 ident: bib60 article-title: Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra-and paracellular pathways publication-title: J. Contr. Release – volume: 274 start-page: 923 year: 1978 end-page: 924 ident: bib5 article-title: Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes publication-title: Nature – volume: 22 start-page: 172 year: 2021 ident: bib78 article-title: Tozinameran (BNT162b2) vaccine: the journey from preclinical research to clinical trials and authorization publication-title: AAPS. PharmSciTech. – volume: 17 start-page: 889 year: 2018 end-page: 911 ident: bib93 article-title: A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection, publication-title: Expert Rev. Vaccines – volume: 5 start-page: 1053 year: 2020 end-page: 1061 ident: bib43 article-title: Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle publication-title: Bioact. Mater. – volume: 8 start-page: 12459 year: 2018 ident: bib76 article-title: DNA-launched RNA replicon vaccines induce potent anti-Ebolavirus immune responses that can be further improved by a recombinant MVA boost publication-title: Sci. Rep. – volume: 131 start-page: 1 year: 2021 end-page: 15 ident: bib115 article-title: Synthetic modified messenger RNA for therapeutic applications publication-title: Acta Biomater. – volume: 133 start-page: 111059 year: 2021 ident: bib101 article-title: Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes publication-title: Biomed. Pharmacother. – volume: 330 start-page: 115689 year: 2021 ident: bib49 article-title: DODAB-DOPE liposome surface coating using in-situ acrylic acid polymerization publication-title: J. Mol. Liq. – volume: 4 year: 2019 ident: bib94 article-title: A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection, publication-title: Sci. Immunol. – volume: 27 start-page: 1231 year: 2020 end-page: 1235 ident: bib19 article-title: Functional differences between protamine preparations for the transfection of mRNA publication-title: Drug Deliv. – volume: 27 start-page: 710 year: 2019 end-page: 728 ident: bib22 article-title: Delivering the messenger: advances in technologies for therapeutic mRNA delivery publication-title: Mol. Ther – volume: 117 start-page: 189 year: 1996 end-page: 194 ident: bib3 article-title: Structural organization of the pre-mRNA splicing commitment: a hypothesis, publication-title: J. Struct. Biol. – volume: 8 start-page: 459 year: 2017 end-page: 468 ident: bib53 article-title: Cationic nanoliposomes meet mRNA: efficient delivery of modified mRNA using hemocompatible and stable vectors for therapeutic applications publication-title: Mol. Ther. - Nucl. Acids – volume: 222 start-page: 113582 year: 2021 ident: bib66 article-title: Doxorubicin-loaded natural daptomycin micelles with enhanced targeting and anti-tumor effect in vivo publication-title: Eur. J. Med. Chem. – volume: 314 start-page: 102 year: 2019 end-page: 115 ident: bib74 article-title: Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide publication-title: J. Contr. Release – volume: 154-155 start-page: 37 year: 2020 end-page: 63 ident: bib38 article-title: Lipid nanoparticles for nucleic acid delivery: current perspectives publication-title: Adv. Drug Deliv. Rev. – volume: 14 start-page: 2733 year: 2019 end-page: 2751 ident: bib103 article-title: Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy publication-title: Int. J. Nanomed. – volume: 20 start-page: 1578 year: 2020 end-page: 1589 ident: bib42 article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering publication-title: Nano. Lett. – volume: 19 start-page: 388 year: 2014 end-page: 399 ident: bib2 article-title: mRNA display: from basic principles to macrocycle drug discovery publication-title: Drug Discov. Today – volume: 32 start-page: 59 year: 2018 ident: bib27 article-title: Validation and application of a novel cholesterol efflux assay using immobilized liposomes as a substitute for cultured cells publication-title: Atherosclerosis Suppl. – volume: 597 start-page: 318 year: 2021 end-page: 324 ident: bib7 article-title: The tangled history of mRNA vaccines, publication-title: Nature – volume: 182 start-page: 812 year: 2020 end-page: 827 ident: bib80 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell – volume: 13 start-page: 759 year: 2014 end-page: 780 ident: bib15 article-title: mRNA-based therapeutics—developing a new class of drugs publication-title: Nat. Rev. Drug Discov. – volume: 32 start-page: 498 year: 2009 end-page: 507 ident: bib69 article-title: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients publication-title: J. Immunother. – volume: 21 start-page: 2482 year: 2020 end-page: 2492 ident: bib61 article-title: Mannosylated poly(ethylene imine) copolymers enhance saRNA uptake and expression in human skin explants publication-title: Biomacromolecules – volume: S1525-0016 start-page: 310 year: 2021 end-page: 315 ident: bib30 article-title: Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs publication-title: Mol. Ther. – volume: 17 start-page: 1996 year: 2020 end-page: 2005 ident: bib114 article-title: Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes publication-title: Mol. Pharmaceut. – volume: 330 start-page: 115703 year: 2021 ident: bib54 article-title: Comparative study of cationic liposomes modified with triphenylphosphonium and imidazolium surfactants for mitochondrial delivery publication-title: J. Mol. Liq. – volume: 54 start-page: 104143 year: 2020 ident: bib102 article-title: Intranasal delivery ofcationic liposome-protamine complex mRNA vaccineelicits effective anti-tumor immunity publication-title: Cell. Immunol. – volume: 235 start-page: 222 year: 2016 end-page: 235 ident: bib64 article-title: Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells publication-title: J. Contr. Release – volume: 246 start-page: 60 year: 2017 end-page: 70 ident: bib65 article-title: Self-aggregating 1.8 kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon-skipping oligonucleotides publication-title: J. Contr. Release – volume: 14 start-page: 2733 year: 2019 end-page: 2751 ident: bib116 article-title: Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy publication-title: Int. J. Nanomed. – volume: 38 start-page: 7409 year: 2020 end-page: 7413 ident: bib97 article-title: Protection against herpes simplex virus type 2 infection in a neonatal murine model using a trivalent nucleoside-modified mRNA in lipid nanoparticle vaccine publication-title: Vaccine – volume: 10 start-page: 871 year: 2019 ident: bib110 article-title: Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes publication-title: Nat. Commun. – volume: 19 start-page: 650 year: 2021 ident: bib20 article-title: Messenger RNA life-cycle in cancer cells: emerging role of conventional and non-conventional RNA-binding proteins? publication-title: Int. J. Mol. Sci. – volume: 12 start-page: 1235 year: 2020 ident: bib29 article-title: The phospholipid research center: current research in phospholipids and their use in drug delivery, publication-title: Pharmaceutics – volume: 155 start-page: 199 year: 2020 end-page: 209 ident: bib33 article-title: Boost of serum resistance and storage stability in cationic polyprenyl-based lipofection by helper lipids compositions publication-title: Eur. J. Pharm. Biopharm – volume: 17 start-page: 1644 year: 2021 end-page: 1659 ident: bib82 article-title: Wnt/β-catenin signaling inhibitors suppress the tumor-initiating properties of a CD44+CD133+subpopulation of caco-2 cells.International publication-title: J. Biol. Sci. – volume: 335 start-page: 306 year: 2021 end-page: 319 ident: bib50 article-title: Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy publication-title: J. Contr. Release – volume: 23 start-page: 2596 year: 2016 end-page: 2607 ident: bib59 article-title: Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA publication-title: Drug Deliv. – volume: 302 start-page: 91 year: 2019 end-page: 100 ident: bib112 article-title: Lipid nanoparticles for delivery of messenger RNA to the back of the eye publication-title: J. Contr. Release – volume: 7 start-page: 132 year: 2019 ident: bib89 article-title: Advances in RNA vaccines for preventive indications: a case study of A vaccine against rabies, publication-title: Vaccines – volume: 10 start-page: 267 year: 2017 end-page: 278 ident: bib24 article-title: Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran publication-title: Pharmacogenomics Personalized Med. – volume: 24 start-page: 369 year: 2021 end-page: 384 ident: bib41 article-title: Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein publication-title: Mol. Ther- Nucleic. Acids – volume: 602 start-page: 120645 year: 2021 ident: bib51 article-title: An update on actively targeted liposomes in advanced drug delivery to glioma publication-title: Int. J. Pharmaceut. – volume: 13 start-page: 240 year: 2021 ident: bib44 article-title: Conjugation of mannans to enhance the potency of liposome nanoparticles for the delivery of RNA vaccines publication-title: Pharmaceutics – volume: 12 start-page: 645210 year: 2021 ident: bib87 article-title: Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response publication-title: Front. Immunol. – volume: 70 start-page: 9031 year: 2010 end-page: 9040 ident: bib12 article-title: Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity publication-title: Cancer Res. – volume: 141 start-page: e139 year: 2020 end-page: e596 ident: bib106 article-title: Heart disease and stroke statistics–2020 update: a report from the American Heart Association publication-title: Circulation – volume: 29 start-page: 126 year: 2018 end-page: 135 ident: bib67 article-title: Self-transfecting micellar RNA: Modulating nanoparticle cell interactions via high density display of small molecule ligands on micelle coronas publication-title: Bioconjugate Chem. – volume: 195 start-page: 23 year: 2019 end-page: 27 ident: bib75 article-title: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation publication-title: Biomaterials – volume: 220 start-page: 381 year: 2012 end-page: 386 ident: bib109 article-title: Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels publication-title: Atherosclerosis – volume: 10 start-page: 136 year: 2020 ident: bib28 article-title: Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy publication-title: 3 Biotech – volume: 30 start-page: 461 year: 2019 end-page: 475 ident: bib73 article-title: mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells publication-title: Bioconjugate Chem. – volume: 373 start-page: 438 year: 2015 end-page: 447 ident: bib108 article-title: Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia publication-title: N. Engl. J. Med. – volume: 29 start-page: 2769 year: 2021 end-page: 2781 ident: bib9 article-title: Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection publication-title: Mol. Ther. – volume: 110 start-page: 997 year: 2021 end-page: 1001 ident: bib105 article-title: Addressing the cold reality of mRNA vaccine stability publication-title: J. Pharm. Sci. – volume: 4 start-page: 211 year: 2021 ident: bib117 article-title: A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery publication-title: Commun. Biol. – volume: 7 year: 2021 ident: bib113 article-title: Ionizable lipid nanoparticles for in utero mRNA delivery publication-title: Sci. Adv. – volume: 354 start-page: 104143 year: 2020 ident: bib55 article-title: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity publication-title: Cell. Immunnol. – volume: 17 start-page: 261 year: 2018 end-page: 279 ident: bib92 article-title: mRNA vaccines - a new era in vaccinology publication-title: Nat. Rev. Drug Discov. – volume: 2 start-page: 17056 year: 2017 ident: bib16 article-title: Tools for translation: non- viral materials for therapeutic mRNA delivery publication-title: Nat. Rev. Mater. – volume: 24 start-page: 102424 year: 2021 ident: bib98 article-title: Immunogenic tumor cell death promotes dendritic cell migration and inhibits tumor growth via enhanced T cell immunity publication-title: iScience – volume: 84 start-page: 110037 year: 2021 ident: bib1 article-title: Multifaceted control of mRNA translation machinery in cancer publication-title: Cell. Signal. – volume: 8 start-page: 12459 year: 2018 ident: 10.1016/j.ejmech.2021.113910_bib76 article-title: DNA-launched RNA replicon vaccines induce potent anti-Ebolavirus immune responses that can be further improved by a recombinant MVA boost publication-title: Sci. Rep. doi: 10.1038/s41598-018-31003-6 – volume: 6 start-page: 11 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib79 article-title: Connections between biomechanics and higher infectivity: a tale of the D614G mutation in the SARS-CoV-2 spike protein publication-title: Signal. Transduct. Target. Ther. doi: 10.1038/s41392-020-00439-6 – volume: 5 year: 2016 ident: 10.1016/j.ejmech.2021.113910_bib13 article-title: Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells publication-title: OncoImmunology doi: 10.1080/2162402X.2016.1232237 – volume: 13 start-page: 759 year: 2014 ident: 10.1016/j.ejmech.2021.113910_bib15 article-title: mRNA-based therapeutics—developing a new class of drugs publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd4278 – volume: 314 start-page: 102 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib74 article-title: Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2019.10.026 – volume: 4 start-page: 211 issue: 1 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib117 article-title: A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery publication-title: Commun. Biol. doi: 10.1038/s42003-021-01728-8 – volume: 84 start-page: 110037 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib1 article-title: Multifaceted control of mRNA translation machinery in cancer publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2021.110037 – volume: 12 start-page: 1042 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib45 article-title: Aerosolizable lipid nanoparticles for pulmonary delivery of mRNA through design of experiments publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12111042 – volume: 8 start-page: 459 year: 2017 ident: 10.1016/j.ejmech.2021.113910_bib53 article-title: Cationic nanoliposomes meet mRNA: efficient delivery of modified mRNA using hemocompatible and stable vectors for therapeutic applications publication-title: Mol. Ther. - Nucl. Acids doi: 10.1016/j.omtn.2017.07.013 – volume: 14 start-page: 1175 year: 2007 ident: 10.1016/j.ejmech.2021.113910_bib14 article-title: Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent publication-title: Gene Ther. doi: 10.1038/sj.gt.3302964 – volume: 19 start-page: 650 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib20 article-title: Messenger RNA life-cycle in cancer cells: emerging role of conventional and non-conventional RNA-binding proteins? publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms19030650 – volume: 182 start-page: 1271 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib8 article-title: A thermostable mRNA vaccine against COVID-19, publication-title: Cell doi: 10.1016/j.cell.2020.07.024 – volume: 29 start-page: 2769 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib9 article-title: Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2021.05.011 – volume: 117 start-page: 189 year: 1996 ident: 10.1016/j.ejmech.2021.113910_bib3 article-title: Structural organization of the pre-mRNA splicing commitment: a hypothesis, publication-title: J. Struct. Biol. doi: 10.1006/jsbi.1996.0082 – volume: 354 start-page: 104143 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib55 article-title: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity publication-title: Cell. Immunnol. doi: 10.1016/j.cellimm.2020.104143 – volume: 383 start-page: 1544 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib86 article-title: Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa2024671 – volume: 154-155 start-page: 37 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib38 article-title: Lipid nanoparticles for nucleic acid delivery: current perspectives publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.06.002 – volume: 27 start-page: 710 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib22 article-title: Delivering the messenger: advances in technologies for therapeutic mRNA delivery publication-title: Mol. Ther doi: 10.1016/j.ymthe.2019.02.012 – volume: 39 start-page: 2190 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib18 article-title: mRNA vaccines manufacturing: challenges and bottlenecks publication-title: Vaccine doi: 10.1016/j.vaccine.2021.03.038 – volume: 7 start-page: 132 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib89 article-title: Advances in RNA vaccines for preventive indications: a case study of A vaccine against rabies, publication-title: Vaccines doi: 10.3390/vaccines7040132 – volume: 27 start-page: 1231 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib19 article-title: Functional differences between protamine preparations for the transfection of mRNA publication-title: Drug Deliv. doi: 10.1080/10717544.2020.1790692 – volume: 155 start-page: 199 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib33 article-title: Boost of serum resistance and storage stability in cationic polyprenyl-based lipofection by helper lipids compositions publication-title: Eur. J. Pharm. Biopharm doi: 10.1016/j.ejpb.2020.07.028 – volume: 597 start-page: 318 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib7 article-title: The tangled history of mRNA vaccines, publication-title: Nature doi: 10.1038/d41586-021-02483-w – volume: 23 start-page: 2596 year: 2016 ident: 10.1016/j.ejmech.2021.113910_bib59 article-title: Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA publication-title: Drug Deliv. doi: 10.3109/10717544.2015.1038856 – volume: 119 start-page: 8698 year: 2015 ident: 10.1016/j.ejmech.2021.113910_bib35 article-title: Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b02891 – volume: 22 start-page: 172 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib78 article-title: Tozinameran (BNT162b2) vaccine: the journey from preclinical research to clinical trials and authorization publication-title: AAPS. PharmSciTech. doi: 10.1208/s12249-021-02058-y – volume: 220 start-page: 381 year: 2012 ident: 10.1016/j.ejmech.2021.113910_bib109 article-title: Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels publication-title: Atherosclerosis doi: 10.1016/j.atherosclerosis.2011.11.026 – volume: 164 start-page: 640 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib46 article-title: Composition design and medical application of liposomes publication-title: Euro. J. Med. Chem. doi: 10.1016/j.ejmech.2019.01.007 – volume: 27 start-page: 836 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib47 article-title: F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia publication-title: Drug. Deliv. doi: 10.1080/10717544.2020.1772409 – volume: 25 start-page: 1467 year: 2017 ident: 10.1016/j.ejmech.2021.113910_bib23 article-title: Lipid nanoparticle systems for enabling gene therapies publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.03.013 – volume: 20 start-page: 1578 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib42 article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering publication-title: Nano. Lett. doi: 10.1021/acs.nanolett.9b04246 – volume: 330 start-page: 115703 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib54 article-title: Comparative study of cationic liposomes modified with triphenylphosphonium and imidazolium surfactants for mitochondrial delivery publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.115703 – volume: 53 start-page: 1281 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib85 article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody, generation publication-title: Immunity doi: 10.1016/j.immuni.2020.11.009 – volume: 18 start-page: 464 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib111 article-title: Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: design of a phase 2a clinical trial publication-title: Mol. Ther. Methods Clin. Dev. doi: 10.1016/j.omtm.2020.05.030 – volume: 102 start-page: 341 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib32 article-title: Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles publication-title: Acta. Biomater. doi: 10.1016/j.actbio.2019.11.022 – volume: 328 start-page: 210 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib56 article-title: DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2020.08.023 – volume: 354 start-page: 104143 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib104 article-title: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity publication-title: Cell. Immunnol. doi: 10.1016/j.cellimm.2020.104143 – volume: 141 start-page: e139 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib106 article-title: Heart disease and stroke statistics–2020 update: a report from the American Heart Association publication-title: Circulation doi: 10.1161/CIR.0000000000000757 – volume: 25 start-page: 5995 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib40 article-title: Nucleic acid delivery by solid lipid nanoparticles containing switchable lipids: plasmid DNA vs. Messenger RNA publication-title: Molecules doi: 10.3390/molecules25245995 – volume: 12 start-page: 1371 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib90 article-title: A glimmer of hope: recent updates and future challenges in Zika vaccine development, publication-title: Viruses doi: 10.3390/v12121371 – volume: 12 start-page: 1235 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib29 article-title: The phospholipid research center: current research in phospholipids and their use in drug delivery, publication-title: Pharmaceutics doi: 10.3390/pharmaceutics12121235 – volume: 231 start-page: 104948 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib100 article-title: Effects of lipid composition in cationic liposomes on suppression of mast cell activation publication-title: Chem. Phys. Lipids doi: 10.1016/j.chemphyslip.2020.104948 – volume: 573 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib31 article-title: Effect of hydrophobic tails of plier-like cationic lipids on nucleic acid delivery and intracellular trafficking publication-title: Int. J. Pharmaceut. doi: 10.1016/j.ijpharm.2019.118798 – volume: 184 start-page: 1171 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib81 article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity publication-title: Cell doi: 10.1016/j.cell.2021.01.037 – volume: 19 start-page: 441 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib107 article-title: RNA therapeutics on the rise publication-title: Nat. Rev. Drug Discov. doi: 10.1038/d41573-020-00078-0 – volume: 359 start-page: 153 year: 2004 ident: 10.1016/j.ejmech.2021.113910_bib4 article-title: Replicating and reshaping DNA: a celebration of the jubilee of the double helix publication-title: Perspect. Philos. Trans. R. Soc. Lond. B. Biol. Sci. doi: 10.1098/rstb.2003.1373 – volume: 182 start-page: 1271 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib77 article-title: A thermostable mRNA vaccine against COVID-19 publication-title: Cell doi: 10.1016/j.cell.2020.07.024 – volume: 195 start-page: 23 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib71 article-title: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.12.019 – volume: 14 start-page: 2733 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib103 article-title: Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S198747 – volume: 38 start-page: 7409 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib97 article-title: Protection against herpes simplex virus type 2 infection in a neonatal murine model using a trivalent nucleoside-modified mRNA in lipid nanoparticle vaccine publication-title: Vaccine doi: 10.1016/j.vaccine.2020.09.079 – volume: S1525-0016 start-page: 310 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib30 article-title: Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs publication-title: Mol. Ther. – volume: 24 start-page: 102424 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib98 article-title: Immunogenic tumor cell death promotes dendritic cell migration and inhibits tumor growth via enhanced T cell immunity publication-title: iScience doi: 10.1016/j.isci.2021.102424 – volume: 601 start-page: 120586 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib39 article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120586 – volume: 11 start-page: 809 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib95 article-title: Hemodynamics of prefrontal cortex in ornithine transcarbamylase deficiency: a twin case study publication-title: Front. Neurol. doi: 10.3389/fneur.2020.00809 – volume: 593 start-page: 120080 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib58 article-title: Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2020.120080 – volume: 14 start-page: 2733 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib116 article-title: Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy publication-title: Int. J. Nanomed. doi: 10.2147/IJN.S198747 – volume: 335 start-page: 306 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib50 article-title: Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2021.05.040 – volume: 17 start-page: 1644 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib82 article-title: Wnt/β-catenin signaling inhibitors suppress the tumor-initiating properties of a CD44+CD133+subpopulation of caco-2 cells.International publication-title: J. Biol. Sci. – volume: 110 start-page: 997 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib105 article-title: Addressing the cold reality of mRNA vaccine stability publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2020.12.006 – volume: 13 year: 2018 ident: 10.1016/j.ejmech.2021.113910_bib72 article-title: mRNA transfection by a Xentryprotamine cell-penetrating peptide is enhanced by TLR antagonist E6446 publication-title: PLoS One doi: 10.1371/journal.pone.0201464 – volume: 23 start-page: 1495 year: 1995 ident: 10.1016/j.ejmech.2021.113910_bib10 article-title: A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo publication-title: Nucleic. Acids. Res. doi: 10.1093/nar/23.9.1495 – volume: 274 start-page: 923 year: 1978 ident: 10.1016/j.ejmech.2021.113910_bib5 article-title: Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes publication-title: Nature doi: 10.1038/274923a0 – volume: 7 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib113 article-title: Ionizable lipid nanoparticles for in utero mRNA delivery publication-title: Sci. Adv. doi: 10.1126/sciadv.aba1028 – volume: 30 start-page: 461 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib73 article-title: mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.8b00524 – volume: 235 start-page: 222 year: 2016 ident: 10.1016/j.ejmech.2021.113910_bib64 article-title: Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2016.06.007 – volume: vol. 12 start-page: 9196 year: 2018 ident: 10.1016/j.ejmech.2021.113910_bib36 – volume: 10 start-page: 871 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib110 article-title: Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes publication-title: Nat. Commun. doi: 10.1038/s41467-019-08852-4 – volume: 131 start-page: 1 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib115 article-title: Synthetic modified messenger RNA for therapeutic applications publication-title: Acta Biomater. doi: 10.1016/j.actbio.2021.06.020 – volume: 29 start-page: 126 year: 2018 ident: 10.1016/j.ejmech.2021.113910_bib67 article-title: Self-transfecting micellar RNA: Modulating nanoparticle cell interactions via high density display of small molecule ligands on micelle coronas publication-title: Bioconjugate Chem. doi: 10.1021/acs.bioconjchem.7b00657 – volume: 13 start-page: 240 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib44 article-title: Conjugation of mannans to enhance the potency of liposome nanoparticles for the delivery of RNA vaccines publication-title: Pharmaceutics doi: 10.3390/pharmaceutics13020240 – volume: 170 start-page: 83 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib118 article-title: Self-assembled mRNA vaccines publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2020.12.014 – volume: 5 start-page: 1053 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib43 article-title: Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle publication-title: Bioact. Mater. doi: 10.1016/j.bioactmat.2020.07.003 – volume: 602 start-page: 120645 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib51 article-title: An update on actively targeted liposomes in advanced drug delivery to glioma publication-title: Int. J. Pharmaceut. doi: 10.1016/j.ijpharm.2021.120645 – volume: 70 start-page: 9031 year: 2010 ident: 10.1016/j.ejmech.2021.113910_bib12 article-title: Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-10-0699 – volume: 17 start-page: 261 year: 2018 ident: 10.1016/j.ejmech.2021.113910_bib92 article-title: mRNA vaccines - a new era in vaccinology publication-title: Nat. Rev. Drug Discov. doi: 10.1038/nrd.2017.243 – volume: 24 start-page: 369 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib41 article-title: Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein publication-title: Mol. Ther- Nucleic. Acids doi: 10.1016/j.omtn.2021.03.008 – volume: 54 start-page: 104143 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib102 article-title: Intranasal delivery ofcationic liposome-protamine complex mRNA vaccineelicits effective anti-tumor immunity publication-title: Cell. Immunol. doi: 10.1016/j.cellimm.2020.104143 – volume: 1863 start-page: 183627 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib25 article-title: Acidic pH-induced changes in lipid nanoparticle membrane packing publication-title: BBA - Biomembranes doi: 10.1016/j.bbamem.2021.183627 – volume: vol. 4 start-page: 2077 year: 2010 ident: 10.1016/j.ejmech.2021.113910_bib34 – volume: 222 start-page: 113582 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib66 article-title: Doxorubicin-loaded natural daptomycin micelles with enhanced targeting and anti-tumor effect in vivo publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2021.113582 – volume: 335 start-page: 449 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib57 article-title: The investigation of mRNA vaccines formulated in liposomes, administrated in multiple routes against SARS-CoV-2 publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2021.05.024 – volume: 7 start-page: 38 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib96 article-title: Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer publication-title: J. Immunother. Canc. doi: 10.1186/s40425-019-0520-5 – volume: 133 start-page: 111059 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib101 article-title: Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes publication-title: Biomed. Pharmacother. doi: 10.1016/j.biopha.2020.111059 – volume: 5 start-page: 251 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib99 article-title: Cancer vaccines: shared tumor antigens return to the spotlight publication-title: Signal. Transduct. Target. Ther. doi: 10.1038/s41392-020-00364-8 – volume: 18 start-page: 702 year: 2011 ident: 10.1016/j.ejmech.2021.113910_bib11 article-title: Selective uptake of naked vaccine RNA by dendritic cells is driven by micropinocytosis and abrogated upon DC maturation publication-title: Gene Ther. doi: 10.1038/gt.2011.17 – volume: 195 start-page: 23 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib75 article-title: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation publication-title: Biomaterials doi: 10.1016/j.biomaterials.2018.12.019 – volume: 25 start-page: 1663 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib83 article-title: COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines publication-title: Eur. Rev. Med. Pharmacol. Sci. – volume: 373 start-page: 438 year: 2015 ident: 10.1016/j.ejmech.2021.113910_bib108 article-title: Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1400283 – volume: 6 start-page: 1601412 year: 2017 ident: 10.1016/j.ejmech.2021.113910_bib70 article-title: Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide publication-title: Adv. Healthc. Mater doi: 10.1002/adhm.201601412 – volume: 246 start-page: 60 year: 2017 ident: 10.1016/j.ejmech.2021.113910_bib65 article-title: Self-aggregating 1.8 kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon-skipping oligonucleotides publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2016.12.005 – volume: 12 start-page: 645210 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib87 article-title: Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response publication-title: Front. Immunol. doi: 10.3389/fimmu.2021.645210 – volume: 601 start-page: 120529 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib52 article-title: Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: a possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies, Int publication-title: J. Pharm. (Lahore) doi: 10.1016/j.ijpharm.2021.120529 – volume: 32 start-page: 498 year: 2009 ident: 10.1016/j.ejmech.2021.113910_bib69 article-title: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients publication-title: J. Immunother. doi: 10.1097/CJI.0b013e3181a00068 – volume: 10 start-page: 136 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib28 article-title: Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy publication-title: 3 Biotech doi: 10.1007/s13205-020-2132-7 – volume: 4 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib94 article-title: A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection, publication-title: Sci. Immunol. doi: 10.1126/sciimmunol.aaw6647 – volume: 19 start-page: 388 year: 2014 ident: 10.1016/j.ejmech.2021.113910_bib2 article-title: mRNA display: from basic principles to macrocycle drug discovery publication-title: Drug Discov. Today doi: 10.1016/j.drudis.2013.10.011 – volume: 26 start-page: 446 year: 2018 ident: 10.1016/j.ejmech.2021.113910_bib62 article-title: Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses publication-title: Mol. Ther. doi: 10.1016/j.ymthe.2017.11.017 – volume: 163 start-page: 179 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib17 article-title: Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination publication-title: Eur. J. Pharm. Biopharm doi: 10.1016/j.ejpb.2021.03.011 – volume: 17 start-page: 1996 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib114 article-title: Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes publication-title: Mol. Pharmaceut. doi: 10.1021/acs.molpharmaceut.0c00170 – volume: 316 start-page: 404 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib26 article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2019.10.028 – volume: 325 start-page: 370 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib91 article-title: Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: the impact of cationic lipid selection, publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2020.06.027 – volume: 10 start-page: 267 year: 2017 ident: 10.1016/j.ejmech.2021.113910_bib24 article-title: Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran publication-title: Pharmacogenomics Personalized Med. doi: 10.2147/PGPM.S87945 – volume: 34 start-page: 1163 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib84 article-title: Effectiveness of pfizer-BioNTech and Moderna vaccines in preventing SARS-CoV-2 infection among nursing home residents before and during widespread circulation of the SARS-CoV-2 B.1.617.2 (delta) variant - national healthcare safety network publication-title: MMWR. Morb. Mortal. Wkly. Rep. doi: 10.15585/mmwr.mm7034e3 – volume: 109 start-page: 1581 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib63 article-title: Efficiency of chitosan/hyaluronan-based mRNA delivery systems in vitro: influence of composition and structure publication-title: J. Pharm. Sci. doi: 10.1016/j.xphs.2019.12.020 – volume: 17 start-page: 889 year: 2018 ident: 10.1016/j.ejmech.2021.113910_bib93 article-title: A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection, publication-title: Expert Rev. Vaccines doi: 10.1080/14760584.2018.1526085 – volume: 32 start-page: 59 year: 2018 ident: 10.1016/j.ejmech.2021.113910_bib27 article-title: Validation and application of a novel cholesterol efflux assay using immobilized liposomes as a substitute for cultured cells publication-title: Atherosclerosis Suppl. doi: 10.1016/j.atherosclerosissup.2018.04.177 – volume: 182 start-page: 812 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib80 article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus publication-title: Cell doi: 10.1016/j.cell.2020.06.043 – volume: 274 start-page: 921 year: 1978 ident: 10.1016/j.ejmech.2021.113910_bib6 article-title: Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line publication-title: Nature doi: 10.1038/274921a0 – volume: 11 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib21 article-title: Nanoscale platforms for messenger RNA delivery, Wiley publication-title: Interdiscip. Rev. Nanomed. Nanobiotechnol – volume: 604 start-page: 120711 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib48 article-title: Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2021.120711 – volume: 228 start-page: 9 year: 2016 ident: 10.1016/j.ejmech.2021.113910_bib60 article-title: Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra-and paracellular pathways publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2016.02.043 – volume: 330 start-page: 115689 year: 2021 ident: 10.1016/j.ejmech.2021.113910_bib49 article-title: DODAB-DOPE liposome surface coating using in-situ acrylic acid polymerization publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2021.115689 – volume: 302 start-page: 91 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib112 article-title: Lipid nanoparticles for delivery of messenger RNA to the back of the eye publication-title: J. Contr. Release doi: 10.1016/j.jconrel.2019.04.015 – volume: 1 year: 2012 ident: 10.1016/j.ejmech.2021.113910_bib37 article-title: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA publication-title: Mol. Ther. Nucleic Acids doi: 10.1038/mtna.2012.28 – volume: 30 start-page: 1210 year: 2012 ident: 10.1016/j.ejmech.2021.113910_bib88 article-title: Protective effica-cy of in vitro synthesized, specific mRNA vaccines against infl-uenza A virus infection publication-title: Nat. Biotechnol. doi: 10.1038/nbt.2436 – volume: 21 start-page: 2482 year: 2020 ident: 10.1016/j.ejmech.2021.113910_bib61 article-title: Mannosylated poly(ethylene imine) copolymers enhance saRNA uptake and expression in human skin explants publication-title: Biomacromolecules doi: 10.1021/acs.biomac.0c00445 – volume: 2 start-page: 17056 year: 2017 ident: 10.1016/j.ejmech.2021.113910_bib16 article-title: Tools for translation: non- viral materials for therapeutic mRNA delivery publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2017.56 – volume: 9 start-page: 67 year: 2019 ident: 10.1016/j.ejmech.2021.113910_bib68 article-title: Preparation of messenger RNA nanomicelles via non-cytotoxic PEG-polyamine nanocomplex for intracerebroventicular delivery: a proof-of-concept study in mouse models, publication-title: Nanomaterials doi: 10.3390/nano9010067 |
SSID | ssj0005600 |
Score | 2.609173 |
SecondaryResourceType | review_article |
Snippet | The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique... |
SourceID | pubmedcentral proquest pubmed crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 113910 |
SubjectTerms | Applications COVID-19 COVID-19 - prevention & control COVID-19 - virology COVID-19 Vaccines - administration & dosage COVID-19 Vaccines - chemistry Humans Liposomes - chemistry Material Micelles mRNA Nano delivery system Nanoparticle Drug Delivery System - chemistry Nanoparticles - chemistry Peptides - chemistry RNA, Messenger - chemistry RNA, Messenger - metabolism SARS-CoV-2 - isolation & purification |
Title | The nano delivery systems and applications of mRNA |
URI | https://dx.doi.org/10.1016/j.ejmech.2021.113910 https://www.ncbi.nlm.nih.gov/pubmed/34689071 https://www.proquest.com/docview/2585897938 https://pubmed.ncbi.nlm.nih.gov/PMC8497955 |
Volume | 227 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4h9jBeJsbGVgbIkxBPZG1iO7EfqwpUmKjQBhJvlu3YWhGkiJaHvuy3c46T0g4kpL3GdmLdWXefc3ffARxIL60TIk1s4XsJkzZLpHBoDK3R2vsepTWV0vkoH16xs2t-vQaDthYmpFU2tj_a9NpaN0-6jTS79-Nx9zd6H0QPlGUh0M9lKDRnrAin_MffpTSPPJah4ORw6WJt-Vyd4-Vu7lwdksjS0NxEhjra193TS_j5bxblkls62YQPDZ4k_bjlj7Dmqi14P2jbuG3B4UUkp54fkcvnWqvpETkkF8-01fNPkOEwqXQ1IaW7DdkacxJpnqdEVyVZjnSTiSd3v0b9z3B1cnw5GCZNR4XEspzOktwXomRSUMtNUVLGqE59bhElat3LtC69Ka3lvDA6Tw3zlJdaI6CzKaoDoSPdhvVqUrmvQDyVDifYzDvDEEMKYdK8xMui48ZrajpAW0Eq29CNh64Xt6rNK7tRUfwqiF9F8XcgWay6j3Qbb8wvWh2plWOj0CO8sfJ7q1KFGglhEl25yeNUZXiDEhLtlujAl6jixV4oy4VEVIbfXVH-YkJg614dqcZ_atZuwfCdnO_8946_wUYWai_C_x--C-uzh0e3h4hoZvbrI78P7_qnP4ejJ__aDCQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8sBepsG-ug_mSRNPRG1iO7Efq2qoDKjQViTeLNuxRRGkaC0P_e93jpOWMiSkvcbnxLpL7n7O3f0M8F16aZ0QaWIL30-YtFkihUNnaI3W3vcpramUzsb56IL9vOSXWzBse2FCWWXj-6NPr711c6XXaLN3N532fmP0QfRAWRYS_VzyF7Ad2Kl4B7YHxyej8brSI4-dKCgf9l2s7aCry7zc9a2rsxJZGs43kaGV9ukI9S8CfVxI-SAyHb2GVw2kJIO46l3YctUe7Azbk9z24OA88lMvD8lk3W41PyQH5HzNXL18AxkOk0pXM1K6m1CwsSSR6XlOdFWSh8luMvPk9td48BYujn5MhqOkOVQhsSyniyT3hSiZFNRyU5SUMapTn1sEilr3M61Lb0prOS-MzlPDPOWl1ojpbIoWQfRI30GnmlXuAxBPpUMBm3lnGMJIIUyal7hfdNx4TU0XaKtIZRvG8XDwxY1qS8uuVVS_CupXUf1dSFaz7iLjxjPyRWsjtfHmKAwKz8z81ppUoUVCpkRXbnY_VxluooRE1yW68D6aeLUWynIhEZjhczeMvxIIhN2bI9X0qibuFgzvyfnH_17xV9gZTc5O1enx-OQTvMxCK0b4HcQ_Q2fx5959QYC0MPvNB_AXIt4O1Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nano+delivery+systems+and+applications+of+mRNA&rft.jtitle=European+journal+of+medicinal+chemistry&rft.au=Li%2C+Mingyuan&rft.au=Li%2C+Yuan&rft.au=Li%2C+Shiqin&rft.au=Jia%2C+Lin&rft.date=2022-01-05&rft.issn=0223-5234&rft.volume=227&rft.spage=113910&rft_id=info:doi/10.1016%2Fj.ejmech.2021.113910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejmech_2021_113910 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0223-5234&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0223-5234&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0223-5234&client=summon |