The nano delivery systems and applications of mRNA

The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiologica...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of medicinal chemistry Vol. 227; p. 113910
Main Authors Li, Mingyuan, Li, Yuan, Li, Shiqin, Jia, Lin, Wang, Haomeng, Li, Meng, Deng, Jie, Zhu, Ali, Ma, Liqiao, Li, Weihong, Yu, Peng, Zhu, Tao
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 05.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun. [Display omitted] •Different mRNA delivery system has different delivery mechanisms.•Innovative materials make nano delivery system versatile.•Besides COVID-19 vaccine, mRNA has more application directions.
AbstractList The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun. Image 1
The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.
The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun.
The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique advantages compared to traditional biopharmaceutical and vaccine technology. In order to overcome mRNA instability in human physiological environments, mRNA chemical modifications and nano delivery systems are two key factors for their in vivo applications. In this review, we would like to summarize the challenges for clinical translation of mRNA-based therapeutics, with an emphasis on recent advances in innovative materials and delivery strategies. The nano delivery systems include lipid delivery systems (lipid nanoparticles and liposomes), polymer complexes, micelles, cationic peptides and so on. The similarities and differences of lipid nanoparticles and liposomes are also discussed. In addition, this review also present the applications of mRNA to other areas than COVID-19 vaccine, such as infectious diseases, tumors, and cardiovascular disease, for which a variety of candidate vaccines or drugs have entered clinical trials. Furthermore, mRNA was found that it might be used to treat some genetic disease, overcome the immaturity of the immune system due to the small fetal size in utero, treat some neurological diseases that are difficult to be treated surgically, even be used in advancing the translation of iPSC technology et al. In short, mRNA has a wide range of applications, and its era has just begun. [Display omitted] •Different mRNA delivery system has different delivery mechanisms.•Innovative materials make nano delivery system versatile.•Besides COVID-19 vaccine, mRNA has more application directions.
ArticleNumber 113910
Author Li, Yuan
Yu, Peng
Zhu, Tao
Li, Shiqin
Li, Mingyuan
Wang, Haomeng
Li, Meng
Ma, Liqiao
Zhu, Ali
Li, Weihong
Deng, Jie
Jia, Lin
Author_xml – sequence: 1
  givenname: Mingyuan
  surname: Li
  fullname: Li, Mingyuan
  organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
– sequence: 2
  givenname: Yuan
  surname: Li
  fullname: Li, Yuan
  organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
– sequence: 3
  givenname: Shiqin
  surname: Li
  fullname: Li, Shiqin
  organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
– sequence: 4
  givenname: Lin
  surname: Jia
  fullname: Jia, Lin
  organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
– sequence: 5
  givenname: Haomeng
  surname: Wang
  fullname: Wang, Haomeng
  organization: CanSino Biologics Inc., Tianjin, 300301, China
– sequence: 6
  givenname: Meng
  surname: Li
  fullname: Li, Meng
  organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
– sequence: 7
  givenname: Jie
  surname: Deng
  fullname: Deng, Jie
  organization: CanSino Biologics Inc., Tianjin, 300301, China
– sequence: 8
  givenname: Ali
  surname: Zhu
  fullname: Zhu, Ali
  organization: CanSino Biologics Inc., Tianjin, 300301, China
– sequence: 9
  givenname: Liqiao
  surname: Ma
  fullname: Ma, Liqiao
  organization: CanSino Biologics Inc., Tianjin, 300301, China
– sequence: 10
  givenname: Weihong
  surname: Li
  fullname: Li, Weihong
  organization: CanSino Biologics Inc., Tianjin, 300301, China
– sequence: 11
  givenname: Peng
  surname: Yu
  fullname: Yu, Peng
  email: yupeng@tust.edu.cn
  organization: China International Science and Technology Cooperation Base of Food Nutrition/Safety and Medicinal Chemistry, Tianjin International Cooperation Research Centre of Food Nutrition/ Safety and Medicinal Chemistry, College of Biotechnology, Tianjin University of Science & Technology/Tianjin Enterprise Key Laboratory for Application Research of Hyaluronic Acid, Tianjin, 300457, China
– sequence: 12
  givenname: Tao
  surname: Zhu
  fullname: Zhu, Tao
  email: tao.zhu@cansinotech.com
  organization: CanSino Biologics Inc., Tianjin, 300301, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34689071$$D View this record in MEDLINE/PubMed
BookMark eNqFkUtrGzEUhUVxqZ20_yCEWXYzjp7z6KJgQpoETAohWYs70p1aZkZypbHB_z6T2iltFsnqLu4534FzTsjEB4-EnDE6Z5QVF-s5rns0qzmnnM0ZEzWjH8iMlUWVC67khMwo5yJXXMgpOUlpTSlVBaWfyFTIoqppyWaEP6ww8-BDZrFzO4z7LO3TgH3KwNsMNpvOGRhc8CkLbdbf3y0-k48tdAm_HO8pefxx9XB5ky9_Xt9eLpa5kYUY8qItKyvrShjVlFZIKYC1haF1DUA5gG0ba4xSZQMFa2QrlAVQpTLMoGWKilPy_cDdbJserUE_ROj0Jroe4l4HcPr_j3cr_SvsdCXrslZqBHw9AmL4vcU06N4lg10HHsM2aa4qVY1SUY3S83-z_oa8FDUKvh0EJoaUIrbauOFPL2O06zSj-nkVvdaHVfTzKvqwymiWr8wv_HdsxwJwbHnnMOpkHPqxHhfRDNoG9zbgCZ2yqJU
CitedBy_id crossref_primary_10_1080_00914037_2024_2360949
crossref_primary_10_1002_btm2_10713
crossref_primary_10_1080_14760584_2023_2238807
crossref_primary_10_1016_j_jlr_2022_100273
crossref_primary_10_3390_pharmaceutics16010131
crossref_primary_10_1186_s40824_022_00292_4
crossref_primary_10_1002_advs_202404684
crossref_primary_10_1002_adhm_202401103
crossref_primary_10_1038_s41467_024_50752_9
crossref_primary_10_1134_S1068162023020152
crossref_primary_10_1016_j_ejmech_2023_115822
crossref_primary_10_1016_j_ejps_2025_107056
crossref_primary_10_1080_17425247_2025_2466767
crossref_primary_10_1016_j_biopha_2024_116691
crossref_primary_10_1002_adhm_202202590
crossref_primary_10_3390_ph16121634
crossref_primary_10_3390_ijms25031739
crossref_primary_10_3390_pharmaceutics15031009
crossref_primary_10_3390_pharmaceutics15102477
crossref_primary_10_1016_j_jconrel_2023_05_009
crossref_primary_10_1080_10408398_2023_2279687
crossref_primary_10_1007_s40259_024_00647_4
crossref_primary_10_1039_D2NA00795A
crossref_primary_10_1016_j_ijpharm_2024_124514
crossref_primary_10_1080_10717544_2023_2219869
crossref_primary_10_3390_pharmaceutics13122053
crossref_primary_10_3389_fbioe_2024_1349077
crossref_primary_10_1021_jacs_4c11066
crossref_primary_10_1186_s12951_022_01517_3
crossref_primary_10_1038_s42004_024_01266_4
crossref_primary_10_1016_j_jddst_2024_105779
crossref_primary_10_1016_j_omtm_2024_101398
crossref_primary_10_25259_AJBPS_3_2022
crossref_primary_10_1016_j_jconrel_2024_05_014
crossref_primary_10_3389_fphar_2022_1090237
crossref_primary_10_3390_vaccines12070717
crossref_primary_10_1038_s41541_023_00732_9
crossref_primary_10_1016_j_ijbiomac_2024_131139
crossref_primary_10_1007_s00108_022_01325_9
crossref_primary_10_1021_acsami_4c00992
crossref_primary_10_1631_jzus_B2300077
crossref_primary_10_1016_j_bmcl_2023_129457
crossref_primary_10_1016_j_nantod_2024_102301
crossref_primary_10_1002_btm2_10579
crossref_primary_10_1093_stcltm_szad087
crossref_primary_10_1007_s00262_025_03992_7
crossref_primary_10_1186_s12943_024_02141_5
crossref_primary_10_1002_btm2_10492
crossref_primary_10_1080_21645515_2022_2040330
crossref_primary_10_1039_D4NA00404C
crossref_primary_10_3390_vaccines11020282
crossref_primary_10_3389_fbioe_2022_1053197
crossref_primary_10_3389_fimmu_2024_1509322
crossref_primary_10_3389_fmats_2022_1059184
crossref_primary_10_3390_pharmaceutics15041127
crossref_primary_10_1038_s41392_023_01561_x
crossref_primary_10_31857_S013234232302015X
crossref_primary_10_3390_biom15030359
crossref_primary_10_3390_pathogens13080692
crossref_primary_10_1186_s40779_023_00445_z
crossref_primary_10_1016_j_jddst_2025_106782
crossref_primary_10_1007_s10544_023_00649_z
crossref_primary_10_1038_s41392_022_00996_y
crossref_primary_10_1002_ctm2_1384
crossref_primary_10_1039_D2TB02455A
crossref_primary_10_1002_smtd_202300880
crossref_primary_10_1039_D4BM00148F
crossref_primary_10_3390_pharmaceutics15010178
crossref_primary_10_1021_acsami_4c07684
crossref_primary_10_1007_s42452_023_05583_6
crossref_primary_10_1186_s12951_022_01472_z
crossref_primary_10_1111_jop_13407
crossref_primary_10_3389_fimmu_2022_974433
crossref_primary_10_2174_0113816128296588240321072042
crossref_primary_10_1111_bph_16409
Cites_doi 10.1038/s41598-018-31003-6
10.1038/s41392-020-00439-6
10.1080/2162402X.2016.1232237
10.1038/nrd4278
10.1016/j.jconrel.2019.10.026
10.1038/s42003-021-01728-8
10.1016/j.cellsig.2021.110037
10.3390/pharmaceutics12111042
10.1016/j.omtn.2017.07.013
10.1038/sj.gt.3302964
10.3390/ijms19030650
10.1016/j.cell.2020.07.024
10.1016/j.ymthe.2021.05.011
10.1006/jsbi.1996.0082
10.1016/j.cellimm.2020.104143
10.1056/NEJMoa2024671
10.1016/j.addr.2020.06.002
10.1016/j.ymthe.2019.02.012
10.1016/j.vaccine.2021.03.038
10.3390/vaccines7040132
10.1080/10717544.2020.1790692
10.1016/j.ejpb.2020.07.028
10.1038/d41586-021-02483-w
10.3109/10717544.2015.1038856
10.1021/acs.jpcb.5b02891
10.1208/s12249-021-02058-y
10.1016/j.atherosclerosis.2011.11.026
10.1016/j.ejmech.2019.01.007
10.1080/10717544.2020.1772409
10.1016/j.ymthe.2017.03.013
10.1021/acs.nanolett.9b04246
10.1016/j.molliq.2021.115703
10.1016/j.immuni.2020.11.009
10.1016/j.omtm.2020.05.030
10.1016/j.actbio.2019.11.022
10.1016/j.jconrel.2020.08.023
10.1161/CIR.0000000000000757
10.3390/molecules25245995
10.3390/v12121371
10.3390/pharmaceutics12121235
10.1016/j.chemphyslip.2020.104948
10.1016/j.ijpharm.2019.118798
10.1016/j.cell.2021.01.037
10.1038/d41573-020-00078-0
10.1098/rstb.2003.1373
10.1016/j.biomaterials.2018.12.019
10.2147/IJN.S198747
10.1016/j.vaccine.2020.09.079
10.1016/j.isci.2021.102424
10.1016/j.ijpharm.2021.120586
10.3389/fneur.2020.00809
10.1016/j.ijpharm.2020.120080
10.1016/j.jconrel.2021.05.040
10.1016/j.xphs.2020.12.006
10.1371/journal.pone.0201464
10.1093/nar/23.9.1495
10.1038/274923a0
10.1126/sciadv.aba1028
10.1021/acs.bioconjchem.8b00524
10.1016/j.jconrel.2016.06.007
10.1038/s41467-019-08852-4
10.1016/j.actbio.2021.06.020
10.1021/acs.bioconjchem.7b00657
10.3390/pharmaceutics13020240
10.1016/j.addr.2020.12.014
10.1016/j.bioactmat.2020.07.003
10.1016/j.ijpharm.2021.120645
10.1158/0008-5472.CAN-10-0699
10.1038/nrd.2017.243
10.1016/j.omtn.2021.03.008
10.1016/j.bbamem.2021.183627
10.1016/j.ejmech.2021.113582
10.1016/j.jconrel.2021.05.024
10.1186/s40425-019-0520-5
10.1016/j.biopha.2020.111059
10.1038/s41392-020-00364-8
10.1038/gt.2011.17
10.1056/NEJMoa1400283
10.1002/adhm.201601412
10.1016/j.jconrel.2016.12.005
10.3389/fimmu.2021.645210
10.1016/j.ijpharm.2021.120529
10.1097/CJI.0b013e3181a00068
10.1007/s13205-020-2132-7
10.1126/sciimmunol.aaw6647
10.1016/j.drudis.2013.10.011
10.1016/j.ymthe.2017.11.017
10.1016/j.ejpb.2021.03.011
10.1021/acs.molpharmaceut.0c00170
10.1016/j.jconrel.2019.10.028
10.1016/j.jconrel.2020.06.027
10.2147/PGPM.S87945
10.15585/mmwr.mm7034e3
10.1016/j.xphs.2019.12.020
10.1080/14760584.2018.1526085
10.1016/j.atherosclerosissup.2018.04.177
10.1016/j.cell.2020.06.043
10.1038/274921a0
10.1016/j.ijpharm.2021.120711
10.1016/j.jconrel.2016.02.043
10.1016/j.molliq.2021.115689
10.1016/j.jconrel.2019.04.015
10.1038/mtna.2012.28
10.1038/nbt.2436
10.1021/acs.biomac.0c00445
10.1038/natrevmats.2017.56
10.3390/nano9010067
ContentType Journal Article
Copyright 2021 Elsevier Masson SAS
Copyright © 2021 Elsevier Masson SAS. All rights reserved.
2021 Elsevier Masson SAS. All rights reserved. 2021 Elsevier Masson SAS
Copyright_xml – notice: 2021 Elsevier Masson SAS
– notice: Copyright © 2021 Elsevier Masson SAS. All rights reserved.
– notice: 2021 Elsevier Masson SAS. All rights reserved. 2021 Elsevier Masson SAS
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1016/j.ejmech.2021.113910
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1768-3254
EndPage 113910
ExternalDocumentID PMC8497955
34689071
10_1016_j_ejmech_2021_113910
S0223523421007595
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATCM
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABUDA
ABYKQ
ABZDS
ACDAQ
ACGFO
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
J1W
KOM
M2Y
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSP
SSU
SSZ
T5K
~G-
1B1
29G
53G
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMS
HMT
HVGLF
HZ~
IHE
R2-
RIG
SCB
SEW
SOC
SPT
SSH
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
5PM
ID FETCH-LOGICAL-c463t-6f78d4983c5b7d3443a1f6c099aa02aadfbdcc557ba61b4f35daa575c1ced1503
IEDL.DBID .~1
ISSN 0223-5234
1768-3254
IngestDate Thu Aug 21 17:38:17 EDT 2025
Tue Aug 05 10:32:04 EDT 2025
Wed Feb 19 02:25:35 EST 2025
Thu Apr 24 22:58:35 EDT 2025
Tue Jul 01 04:03:57 EDT 2025
Fri Feb 23 02:40:03 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords COVID-19
mRNA
Material
Applications
Nano delivery system
Language English
License Copyright © 2021 Elsevier Masson SAS. All rights reserved.
Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-6f78d4983c5b7d3443a1f6c099aa02aadfbdcc557ba61b4f35daa575c1ced1503
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC8497955
PMID 34689071
PQID 2585897938
PQPubID 23479
PageCount 1
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_8497955
proquest_miscellaneous_2585897938
pubmed_primary_34689071
crossref_citationtrail_10_1016_j_ejmech_2021_113910
crossref_primary_10_1016_j_ejmech_2021_113910
elsevier_sciencedirect_doi_10_1016_j_ejmech_2021_113910
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-01-05
PublicationDateYYYYMMDD 2022-01-05
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-05
  day: 05
PublicationDecade 2020
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle European journal of medicinal chemistry
PublicationTitleAlternate Eur J Med Chem
PublicationYear 2022
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Bell, Yang, Leung, Krissansen (bib72) 2018; 13
Emma, Laura, James (bib81) 2021; 184
Chan, Khung, Lin (bib68) 2019; 9
Zhang, Liu, Chin, Phua (bib17) 2021; 163
Qiu, Man, Liao, Kung, Chow, Lam (bib74) 2019; 314
Kowalski, Rudra, Miao, Anderson (bib22) 2019; 27
Rak, Ochałek, Gawarecka, Masnyk, Chmielewski, Chojnacki, Swiezewska, Madeja (bib33) 2020; 155
Lou, Anderluzzi, Schmidta, Woods, Gallorini, Brazzoli, Giusti, Ferlenghi, Johnson, Roberts, O'Hagan, Baudner, Perrie (bib91) 2020; 325
Leung, Tam, Chen, Hafez, Cullis (bib35) 2015; 119
Kreiter, Selmi, Diken, Koslowski, Britten, Huber (bib12) 2010; 70
Solomun, Cinar, Mapfumo, Richter, Moek, Hausig, Martin, Hoeppener, Nischang, Traeger (bib58) 2021; 593
Soliman, Alameh, Cresenzo, Buschmann, Lavertu (bib63) 2020; 109
Samaridou, Heyes, Lutwyche (bib38) 2020; 154-155
Zhang, Men, Zhang (bib103) 2019; 14
Kim, Sung, Chang, Alfeche, Leal (bib36) 2018; vol. 12
Petsch, Schnee, Vogel (bib88) 2012; 30
Mittal, Verma (bib79) 2021; 6
Gkionis, Aojula, Harris, Tirella (bib48) 2021; 604
Rizk, Tuzmen (bib24) 2017; 10
Vogel, Lambert, Kinnear, Busse, Erbar, Reuter (bib62) 2018; 26
Roshan, O'Hagan, Roberto, Baudner (bib44) 2021; 13
Choia, Leebe, Yang, Oh, Won, Han, Jeong, Kim, Kim, Kim, Cho (bib64) 2016; 235
Probst, Weide, Scheel, Pichler, Hoerr, Rammensee (bib14) 2007; 14
Kim, Choi, Lee, Lee, Lee, Sun, Kim (bib82) 2021; 17
Ostro, Giacomoni, Lavelle, Paxton, Dray (bib6) 1978; 274
Du, Li, Li, Galons, Guo, Teng, Zhang, Li, Yu (bib47) 2020; 27
Diken, Kreiter, Selmi, Britten, Huber, Türeci (bib11) 2011; 18
Weide, Pascolo, Scheel, Derhovanessian, Pflugfelder, Eigentler (bib69) 2009; 32
Zhang, Li, Deng, Zhao, Huang, Yang, Huang, Gao, Zhou, Zhang, Guo, Sun, Fan, Zu, Chen, He, Cao, Huang, Qiu, Nie, Jiang, Yan, Ye, Zhong, Xue, Zha, Zhou, Yang, Wang, Ying, Qin (bib8) 2020; 182
Kim, Eygeris, Gupta, Sahay (bib118) 2021; 170
Crommelin, Anchordoquy, Volkin, Jiskoot, Mastrobattista (bib105) 2021; 110
Lou, Koker, Lau, Hennink, Mastrobattista (bib73) 2019; 30
Dolgin (bib7) 2021; 597
Belliveau, Huft, Lin, Chen, Leung, Leaver, Wild, Lee, Taylor, Tam, Hansen, Cullis (bib37) 2012; 1
Papachristofilou, Hipp, Klinkhardt, Früh, Sebastian, Weiss, Pless, Cathomas, Hilbe, Pall, Wehler, Alt, Bischoff, Geißler, Griesinger, Kallen, Mleczek, Schröder, Scheel, Muth, Zippelius (bib96) 2019; 7
Mai, Guo, Zhao, Ma, Hou, Yang (bib55) 2020; 354
Udhayakumar, Beuckelaer, McCaffrey, McCrudden, Kirschman, Vanover (bib70) 2017; 6
LaTourette, Awasthi, Desmond, Pardi, Cohen, Weissman, Friedman (bib97) 2020; 38
Pengnam, Plainwong, Patrojanasophon, Rojanarata, Ngawhirunpat, Radchatawedchakoon, Niyomtham, Yingyongnarongkul, Opanasopit (bib31) 2020; 573
Nanduri, Pilishvili, Derado, Soe, Dollard, Wu, Li, Bagchi, Dubendris, Link-Gelles, Jernigan, Budnitz, Bell, Benin, Shang, Edwards, Verani, Schrag (bib84) 2021; 34
Mai, Guo, Zhao (bib102) 2020; 54
López, Caparrós, Cabeza, Nieto, Ortiz, Perazzoli, Segura, Cañizares, Baeyens, Melguizo, Prados (bib101) 2021; 133
Korber, Fischer, Gnanakaran (bib80) 2020; 182
Pardi, Hogan, Porter, Weissman (bib92) 2018; 17
Hajj, Whitehead (bib16) 2017; 2
Kose, Fox, Sapparapu, Bombardi, Ennekoon, Silva, Elbashir, Theisen, Narayanan, Ciaramella, Himansu, Diamond, Crowe (bib94) 2019; 4
Dimitriadis (bib5) 1978; 274
Schoenmaker, Witzigmann, Kulkarni, Verbeke, Kersten, Jiskoot, Crommelin (bib39) 2021; 601
Wang, Zuroske, Watts (bib107) 2020; 19
Kyte, Aamdal, Dueland, Sæbøe, Inderberg, Madsbu (bib13) 2016; 5
Yang, Lia, Wang (bib43) 2020; 5
Blakney, Abdouni, Yilmaz, Liu, McKay, Bouton (bib61) 2020; 21
Gao, Zhang, Feng, Liu (bib115) 2021; 131
Meo, Bukhari, Akram, Meo, Klonoff (bib83) 2021; 25
Li, Du, Guo, Teng, Meng, Sun, Li, Yu, Galons (bib46) 2019; 164
Rosenbaum, Tchitchek, Joly, Pozo, Stimmer, Langlois, Hocini, Gosse, Pejoski, Cosma, Beignon, Bosquet, Levy, Grand, Martinon (bib87) 2021; 12
Armbruster, Jasny, Petsch (bib89) 2019; 7
Dhaliwal, Fan, Kim, Amiji (bib114) 2020; 17
Roloff, Nelles, Thompson, Yeo, Gianneschi (bib67) 2018; 29
Mai, Guo, Zhao, Ma, Hou, Yang (bib104) 2020; 354
Corbett, Flynn, Foulds, Francica, Barnum, Werner, Flach, O'Connell, Bock, Minai (bib86) 2020; 383
Zhang, Men, Zhang, Zhang, Yang, Duan (bib116) 2019; 14
Nimrat, Inderbir, Urooj, Harshan, Shreya, Mayur (bib78) 2021; 22
Koitabashi, Nagumo, Nakao, Machida, Yoshida, Kato (bib25) 2021; 1863
Li, Zhang, Dong (bib21) 2019; 11
Billingsley, Singh, Ravikumar, Zhang, June, Mitchell (bib42) 2020; 20
Satoa, Okabea, Notea, Hashiba, Maeki, Tokeshi, Harashima (bib32) 2020; 102
Li, Zhou, Yu, Cai, Yang, Kuang, Liu, He, Wang (bib50) 2021; 335
Alboushi, Hackett, Naeli, Bakhti, Jafarnejad (bib1) 2021; 84
Takata, Shimizu, Kawaguchi, Ueda, Elsadek, Ando, Ishima, Ishida (bib52) 2021; 601
Davies, Hovdal, Edmunds, Nordberg, Dahlén, Dabkowska, Arteta, Radulescu, Kjellman, Höijer, Seeliger, Holmedal, Andihn, Bergenhem, Sandinge, Johansson, Hultin, Johansson, Lindqvist, Björsson, Jing, Bartesaghi, Lindfors, Andersson (bib41) 2021; 24
Huang, Zhang, Yang, Xiao, Zheng, Song (bib57) 2021; 335
Baskararaj, Panneerselvam, Govindaraj, Arunachalam, Parasuraman, Pandian, Sankaranarayanan, Mohan, Palanisamy, Ravishankar, Kunjiappan (bib28) 2020; 10
Michel, Luft, Abraham, Reinhardt, Medina, Kurz, Schaller, Adali, Schlensak, Peter, Wendel, Wang, Krajewski (bib53) 2017; 8
Zhang, Tang, Tian, Jia, Hu, Zhou, Ding, Xu, Yang (bib56) 2020; 328
Chiper, Tounsi, Kole, Kichler, Zuber (bib65) 2017; 246
Kuznetsova, Vasileva, Gaynanova, Pavlov, Sapunova, Voloshina, Sibgatullin, Samigullin, Petrov, Zakharova, Sinyashin (bib54) 2021; 330
Melčák, Raška (bib3) 1996; 117
Brenner (bib4) 2004; 359
Diamond, Rosa, Chiuppesi, Contreras, Dadwal, Wussow, Bautista, Nakamura, Zaia (bib93) 2018; 17
Moriya, Kitagawa, Hayakawa, Hemmi, Kaisho, Ueha, Ikebuchi, Yasuda, Nakanishi, Honda, Matsushima, Kabashima, Ueda, Kusumoto, Chtanova, Tomura (bib98) 2021; 24
Jarzebska, Lauchli, Iselin, French, Johansen, Guenova, Kündig, Pascolo (bib19) 2020; 27
Ferri, Tibolla, Pirillo (bib109) 2012; 220
Knudson, Peixoto, Muramatsu, Stotesbury, Tang, Lin, Tam, Weissman, Pardi, Sigal (bib9) 2021; 29
Guimaraes, Zhang, Spektor, Tan, Chung, Billingsley, Mayta, Riley, Wang, Wilson, Mitchell (bib26) 2019; 316
Zhang, Leal, Soto, Smyth, Ghosh (bib45) 2020; 12
Anttila, Saraste, Knuuti (bib111) 2020; 18
Tombácz, Laczkó, Shahnawaz, Muramatsu, Natesan, Yadegari, Papp, Alameh, Shuvaev, Mui, Tam, Muzykantov, Pardi, Weissman, Parhiz (bib30) 2021; S1525-0016
Drescher, Hoogevest (bib29) 2020; 12
Patel, Ryals, Weller, Pennesi, Sahay (bib112) 2019; 302
Sahin, Karikó, Türeci (bib15) 2014; 13
Anderson, Gropman, Mons, Stratakis, Gandjbakhche (bib95) 2020; 11
Rosa, Prazeres, Azevedo, Marques (bib18) 2021; 39
Ramireza, Orth, Pires, Zawadzki, Freitas (bib49) 2021; 330
Castanha, Marques (bib90) 2020; 12
Jabali, Farshbaf, Walker, Hemmati, Fatahi, Milani, Sarfraz, Valizadeh (bib51) 2021; 602
Cullis, Hope (bib23) 2017; 25
Aguado, Castejón, Pascual, Gascón, Rodríguez, Aspiazu (bib40) 2020; 25
Jahn, Stavis, Hong, Vreeland, Devoe, Gaitan (bib34) 2010; vol. 4
Gan, Carlsson (bib110) 2019; 10
Coppin, Leclerc, Vincent, Porchet, Pigny (bib20) 2021; 19
Coolen, Lacroix, Mercier, Delaune, Monge, Exposito (bib71) 2019; 195
Inoh, Hirose, Yokoi, Yokawa, Furuno (bib100) 2020; 231
Li, Zhao, Fu, Li, Gong, Zhang (bib60) 2016; 228
Li, Goedegebuure, Gillanders (bib99) 2020; 5
Lederer, Castaño, Atria, Oguin, Wang, Manzoni, Muramatsu, Hogan, Amanat, Cherubin, Lundgreen, Tam, Fan, Eisenlohr, Maillard, Weissman, Bates, Krammer, Sempowski, Pardi, Locci (bib85) 2020; 53
Horiuchi, Lai, Yamazaki, Nakamura, Ohkawa, Yano, Kameda, Okubo, Shimano, Hagihara, Tohda, Tozuka (bib27) 2018; 32
Johanning, Conry, LoBuglio, Wright, Sumerel, Pike (bib10) 1995; 23
Guo, Zhang, He, Jiang, Tian, Li, Liu, Wang, Sun (bib66) 2021; 222
Virani, Alonso, Benjamin (bib106) 2020; 141
Munson, O'Driscoll, Silva, Lázaro-Ibáñez, Gallud, Wilson, Collén, Esbjörner, Sabirsh (bib117) 2021; 4
Zhao, Li, Zhang, Gong, Sun (bib59) 2016; 23
Gaudet, Alexander, Baker (bib108) 2015; 373
Coolen, Lacroix, Gouy, Delaune, Monge, Exposito, Verrier (bib75) 2019; 195
Josephson, Ricardo, Szostak (bib2) 2014; 19
Zhang, Li, Deng, Zhao, Huang, Yang, Huang, Gao, Zhou, Zhang, Guo, Sun, Fan, Zu, Chen, He, Cao, Huang, Qiu, Nie, Jiang, Yan, Ye, Zhong, Xue, Zha, Zhou, Yang, Wang, Ying, Qin (bib77) 2020; 182
Öhlund, Arriaza, Zusinaite, Szurgot, Männik, Kraus, Ustav, Merits, Esteban, Liljeström, Ljungberg (bib76) 2018; 8
Riley, Kashyap, Billingsley, White, Alameh, Bose, Zoltick, Li, Zhang, Cheng, Weissman, Peranteau, Mitchell (bib113) 2021; 7
Sahin (10.1016/j.ejmech.2021.113910_bib15) 2014; 13
Rosa (10.1016/j.ejmech.2021.113910_bib18) 2021; 39
Zhang (10.1016/j.ejmech.2021.113910_bib77) 2020; 182
Chan (10.1016/j.ejmech.2021.113910_bib68) 2019; 9
Nanduri (10.1016/j.ejmech.2021.113910_bib84) 2021; 34
Du (10.1016/j.ejmech.2021.113910_bib47) 2020; 27
Mittal (10.1016/j.ejmech.2021.113910_bib79) 2021; 6
Patel (10.1016/j.ejmech.2021.113910_bib112) 2019; 302
Coolen (10.1016/j.ejmech.2021.113910_bib75) 2019; 195
Nimrat (10.1016/j.ejmech.2021.113910_bib78) 2021; 22
Dimitriadis (10.1016/j.ejmech.2021.113910_bib5) 1978; 274
Solomun (10.1016/j.ejmech.2021.113910_bib58) 2021; 593
Huang (10.1016/j.ejmech.2021.113910_bib57) 2021; 335
Samaridou (10.1016/j.ejmech.2021.113910_bib38) 2020; 154-155
Guo (10.1016/j.ejmech.2021.113910_bib66) 2021; 222
Takata (10.1016/j.ejmech.2021.113910_bib52) 2021; 601
Zhang (10.1016/j.ejmech.2021.113910_bib116) 2019; 14
Kyte (10.1016/j.ejmech.2021.113910_bib13) 2016; 5
Li (10.1016/j.ejmech.2021.113910_bib21) 2019; 11
Choia (10.1016/j.ejmech.2021.113910_bib64) 2016; 235
Ostro (10.1016/j.ejmech.2021.113910_bib6) 1978; 274
Zhang (10.1016/j.ejmech.2021.113910_bib8) 2020; 182
Corbett (10.1016/j.ejmech.2021.113910_bib86) 2020; 383
Johanning (10.1016/j.ejmech.2021.113910_bib10) 1995; 23
Satoa (10.1016/j.ejmech.2021.113910_bib32) 2020; 102
Gkionis (10.1016/j.ejmech.2021.113910_bib48) 2021; 604
Michel (10.1016/j.ejmech.2021.113910_bib53) 2017; 8
Knudson (10.1016/j.ejmech.2021.113910_bib9) 2021; 29
Roshan (10.1016/j.ejmech.2021.113910_bib44) 2021; 13
Zhang (10.1016/j.ejmech.2021.113910_bib103) 2019; 14
Belliveau (10.1016/j.ejmech.2021.113910_bib37) 2012; 1
Castanha (10.1016/j.ejmech.2021.113910_bib90) 2020; 12
Anderson (10.1016/j.ejmech.2021.113910_bib95) 2020; 11
Guimaraes (10.1016/j.ejmech.2021.113910_bib26) 2019; 316
Josephson (10.1016/j.ejmech.2021.113910_bib2) 2014; 19
Li (10.1016/j.ejmech.2021.113910_bib50) 2021; 335
Rizk (10.1016/j.ejmech.2021.113910_bib24) 2017; 10
Leung (10.1016/j.ejmech.2021.113910_bib35) 2015; 119
Probst (10.1016/j.ejmech.2021.113910_bib14) 2007; 14
Yang (10.1016/j.ejmech.2021.113910_bib43) 2020; 5
Korber (10.1016/j.ejmech.2021.113910_bib80) 2020; 182
Papachristofilou (10.1016/j.ejmech.2021.113910_bib96) 2019; 7
Lou (10.1016/j.ejmech.2021.113910_bib91) 2020; 325
Gan (10.1016/j.ejmech.2021.113910_bib110) 2019; 10
Drescher (10.1016/j.ejmech.2021.113910_bib29) 2020; 12
Öhlund (10.1016/j.ejmech.2021.113910_bib76) 2018; 8
Rosenbaum (10.1016/j.ejmech.2021.113910_bib87) 2021; 12
Kuznetsova (10.1016/j.ejmech.2021.113910_bib54) 2021; 330
Brenner (10.1016/j.ejmech.2021.113910_bib4) 2004; 359
Zhang (10.1016/j.ejmech.2021.113910_bib45) 2020; 12
Jahn (10.1016/j.ejmech.2021.113910_bib34) 2010; vol. 4
Chiper (10.1016/j.ejmech.2021.113910_bib65) 2017; 246
Cullis (10.1016/j.ejmech.2021.113910_bib23) 2017; 25
Blakney (10.1016/j.ejmech.2021.113910_bib61) 2020; 21
Kim (10.1016/j.ejmech.2021.113910_bib82) 2021; 17
Schoenmaker (10.1016/j.ejmech.2021.113910_bib39) 2021; 601
Vogel (10.1016/j.ejmech.2021.113910_bib62) 2018; 26
Moriya (10.1016/j.ejmech.2021.113910_bib98) 2021; 24
López (10.1016/j.ejmech.2021.113910_bib101) 2021; 133
Pengnam (10.1016/j.ejmech.2021.113910_bib31) 2020; 573
Mai (10.1016/j.ejmech.2021.113910_bib55) 2020; 354
Coppin (10.1016/j.ejmech.2021.113910_bib20) 2021; 19
Pardi (10.1016/j.ejmech.2021.113910_bib92) 2018; 17
Munson (10.1016/j.ejmech.2021.113910_bib117) 2021; 4
Billingsley (10.1016/j.ejmech.2021.113910_bib42) 2020; 20
Inoh (10.1016/j.ejmech.2021.113910_bib100) 2020; 231
Kim (10.1016/j.ejmech.2021.113910_bib36) 2018; vol. 12
Anttila (10.1016/j.ejmech.2021.113910_bib111) 2020; 18
Davies (10.1016/j.ejmech.2021.113910_bib41) 2021; 24
Kowalski (10.1016/j.ejmech.2021.113910_bib22) 2019; 27
Baskararaj (10.1016/j.ejmech.2021.113910_bib28) 2020; 10
Ramireza (10.1016/j.ejmech.2021.113910_bib49) 2021; 330
Lou (10.1016/j.ejmech.2021.113910_bib73) 2019; 30
Zhao (10.1016/j.ejmech.2021.113910_bib59) 2016; 23
Ferri (10.1016/j.ejmech.2021.113910_bib109) 2012; 220
Udhayakumar (10.1016/j.ejmech.2021.113910_bib70) 2017; 6
Armbruster (10.1016/j.ejmech.2021.113910_bib89) 2019; 7
Zhang (10.1016/j.ejmech.2021.113910_bib17) 2021; 163
Horiuchi (10.1016/j.ejmech.2021.113910_bib27) 2018; 32
Riley (10.1016/j.ejmech.2021.113910_bib113) 2021; 7
Jarzebska (10.1016/j.ejmech.2021.113910_bib19) 2020; 27
Li (10.1016/j.ejmech.2021.113910_bib46) 2019; 164
Tombácz (10.1016/j.ejmech.2021.113910_bib30) 2021; S1525-0016
Alboushi (10.1016/j.ejmech.2021.113910_bib1) 2021; 84
Diken (10.1016/j.ejmech.2021.113910_bib11) 2011; 18
Koitabashi (10.1016/j.ejmech.2021.113910_bib25) 2021; 1863
Roloff (10.1016/j.ejmech.2021.113910_bib67) 2018; 29
Gao (10.1016/j.ejmech.2021.113910_bib115) 2021; 131
Kim (10.1016/j.ejmech.2021.113910_bib118) 2021; 170
Jabali (10.1016/j.ejmech.2021.113910_bib51) 2021; 602
Coolen (10.1016/j.ejmech.2021.113910_bib71) 2019; 195
Gaudet (10.1016/j.ejmech.2021.113910_bib108) 2015; 373
Dolgin (10.1016/j.ejmech.2021.113910_bib7) 2021; 597
Rak (10.1016/j.ejmech.2021.113910_bib33) 2020; 155
Zhang (10.1016/j.ejmech.2021.113910_bib56) 2020; 328
Petsch (10.1016/j.ejmech.2021.113910_bib88) 2012; 30
Weide (10.1016/j.ejmech.2021.113910_bib69) 2009; 32
Diamond (10.1016/j.ejmech.2021.113910_bib93) 2018; 17
Hajj (10.1016/j.ejmech.2021.113910_bib16) 2017; 2
Meo (10.1016/j.ejmech.2021.113910_bib83) 2021; 25
Lederer (10.1016/j.ejmech.2021.113910_bib85) 2020; 53
Aguado (10.1016/j.ejmech.2021.113910_bib40) 2020; 25
Kreiter (10.1016/j.ejmech.2021.113910_bib12) 2010; 70
Kose (10.1016/j.ejmech.2021.113910_bib94) 2019; 4
Crommelin (10.1016/j.ejmech.2021.113910_bib105) 2021; 110
Emma (10.1016/j.ejmech.2021.113910_bib81) 2021; 184
Li (10.1016/j.ejmech.2021.113910_bib60) 2016; 228
Mai (10.1016/j.ejmech.2021.113910_bib102) 2020; 54
LaTourette (10.1016/j.ejmech.2021.113910_bib97) 2020; 38
Mai (10.1016/j.ejmech.2021.113910_bib104) 2020; 354
Soliman (10.1016/j.ejmech.2021.113910_bib63) 2020; 109
Dhaliwal (10.1016/j.ejmech.2021.113910_bib114) 2020; 17
Melčák (10.1016/j.ejmech.2021.113910_bib3) 1996; 117
Bell (10.1016/j.ejmech.2021.113910_bib72) 2018; 13
Qiu (10.1016/j.ejmech.2021.113910_bib74) 2019; 314
Virani (10.1016/j.ejmech.2021.113910_bib106) 2020; 141
Li (10.1016/j.ejmech.2021.113910_bib99) 2020; 5
Wang (10.1016/j.ejmech.2021.113910_bib107) 2020; 19
References_xml – volume: 1863
  start-page: 183627
  year: 2021
  ident: bib25
  article-title: Acidic pH-induced changes in lipid nanoparticle membrane packing
  publication-title: BBA - Biomembranes
– volume: 9
  start-page: 67
  year: 2019
  ident: bib68
  article-title: Preparation of messenger RNA nanomicelles via non-cytotoxic PEG-polyamine nanocomplex for intracerebroventicular delivery: a proof-of-concept study in mouse models,
  publication-title: Nanomaterials
– volume: 163
  start-page: 179
  year: 2021
  end-page: 187
  ident: bib17
  article-title: Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination
  publication-title: Eur. J. Pharm. Biopharm
– volume: 184
  start-page: 1171
  year: 2021
  end-page: 1187
  ident: bib81
  article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity
  publication-title: Cell
– volume: 18
  start-page: 702
  year: 2011
  end-page: 708
  ident: bib11
  article-title: Selective uptake of naked vaccine RNA by dendritic cells is driven by micropinocytosis and abrogated upon DC maturation
  publication-title: Gene Ther.
– volume: 13
  year: 2018
  ident: bib72
  article-title: mRNA transfection by a Xentryprotamine cell-penetrating peptide is enhanced by TLR antagonist E6446
  publication-title: PLoS One
– volume: 593
  start-page: 120080
  year: 2021
  ident: bib58
  article-title: Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery
  publication-title: Int. J. Pharm.
– volume: 383
  start-page: 1544
  year: 2020
  end-page: 1555
  ident: bib86
  article-title: Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates
  publication-title: N. Engl. J. Med.
– volume: 11
  start-page: 809
  year: 2020
  ident: bib95
  article-title: Hemodynamics of prefrontal cortex in ornithine transcarbamylase deficiency: a twin case study
  publication-title: Front. Neurol.
– volume: 182
  start-page: 1271
  year: 2020
  end-page: 1283
  ident: bib77
  article-title: A thermostable mRNA vaccine against COVID-19
  publication-title: Cell
– volume: 119
  start-page: 8698
  year: 2015
  end-page: 8706
  ident: bib35
  article-title: Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems
  publication-title: J. Phys. Chem. B
– volume: 5
  year: 2016
  ident: bib13
  article-title: Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells
  publication-title: OncoImmunology
– volume: 14
  start-page: 1175
  year: 2007
  end-page: 1180
  ident: bib14
  article-title: Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent
  publication-title: Gene Ther.
– volume: 601
  start-page: 120529
  year: 2021
  ident: bib52
  article-title: Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: a possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies, Int
  publication-title: J. Pharm. (Lahore)
– volume: 19
  start-page: 441
  year: 2020
  end-page: 442
  ident: bib107
  article-title: RNA therapeutics on the rise
  publication-title: Nat. Rev. Drug Discov.
– volume: 195
  start-page: 23
  year: 2019
  end-page: 37
  ident: bib71
  article-title: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation
  publication-title: Biomaterials
– volume: 5
  start-page: 251
  year: 2020
  ident: bib99
  article-title: Cancer vaccines: shared tumor antigens return to the spotlight
  publication-title: Signal. Transduct. Target. Ther.
– volume: 109
  start-page: 1581
  year: 2020
  end-page: 1593
  ident: bib63
  article-title: Efficiency of chitosan/hyaluronan-based mRNA delivery systems in vitro: influence of composition and structure
  publication-title: J. Pharm. Sci.
– volume: 25
  start-page: 1663
  year: 2021
  end-page: 1669
  ident: bib83
  article-title: COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 601
  start-page: 120586
  year: 2021
  ident: bib39
  article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability
  publication-title: Int. J. Pharm.
– volume: 18
  start-page: 464
  year: 2020
  end-page: 472
  ident: bib111
  article-title: Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: design of a phase 2a clinical trial
  publication-title: Mol. Ther. Methods Clin. Dev.
– volume: 274
  start-page: 921
  year: 1978
  end-page: 923
  ident: bib6
  article-title: Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line
  publication-title: Nature
– volume: 164
  start-page: 640
  year: 2019
  end-page: 653
  ident: bib46
  article-title: Composition design and medical application of liposomes
  publication-title: Euro. J. Med. Chem.
– volume: 335
  start-page: 449
  year: 2021
  end-page: 456
  ident: bib57
  article-title: The investigation of mRNA vaccines formulated in liposomes, administrated in multiple routes against SARS-CoV-2
  publication-title: J. Contr. Release
– volume: 604
  start-page: 120711
  year: 2021
  ident: bib48
  article-title: Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics
  publication-title: Int. J. Pharm.
– volume: 359
  start-page: 153
  year: 2004
  end-page: 154
  ident: bib4
  article-title: Replicating and reshaping DNA: a celebration of the jubilee of the double helix
  publication-title: Perspect. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
– volume: 12
  start-page: 1042
  year: 2020
  ident: bib45
  article-title: Aerosolizable lipid nanoparticles for pulmonary delivery of mRNA through design of experiments
  publication-title: Pharmaceutics
– volume: vol. 4
  start-page: 2077
  year: 2010
  end-page: 2087
  ident: bib34
  publication-title: Microfluidic Mixing and the Formation of Nanoscale Lipid Vesicles
– volume: 6
  start-page: 1601412
  year: 2017
  ident: bib70
  article-title: Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide
  publication-title: Adv. Healthc. Mater
– volume: 170
  start-page: 83
  year: 2021
  end-page: 112
  ident: bib118
  article-title: Self-assembled mRNA vaccines
  publication-title: Adv. Drug Deliv. Rev.
– volume: 316
  start-page: 404
  year: 2019
  end-page: 417
  ident: bib26
  article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
  publication-title: J. Contr. Release
– volume: 30
  start-page: 1210
  year: 2012
  end-page: 1216
  ident: bib88
  article-title: Protective effica-cy of in vitro synthesized, specific mRNA vaccines against infl-uenza A virus infection
  publication-title: Nat. Biotechnol.
– volume: 182
  start-page: 1271
  year: 2020
  end-page: 1283
  ident: bib8
  article-title: A thermostable mRNA vaccine against COVID-19,
  publication-title: Cell
– volume: 1
  year: 2012
  ident: bib37
  article-title: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA
  publication-title: Mol. Ther. Nucleic Acids
– volume: 573
  year: 2020
  ident: bib31
  article-title: Effect of hydrophobic tails of plier-like cationic lipids on nucleic acid delivery and intracellular trafficking
  publication-title: Int. J. Pharmaceut.
– volume: 231
  start-page: 104948
  year: 2020
  ident: bib100
  article-title: Effects of lipid composition in cationic liposomes on suppression of mast cell activation
  publication-title: Chem. Phys. Lipids
– volume: 26
  start-page: 446
  year: 2018
  end-page: 455
  ident: bib62
  article-title: Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses
  publication-title: Mol. Ther.
– volume: 102
  start-page: 341
  year: 2020
  end-page: 350
  ident: bib32
  article-title: Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles
  publication-title: Acta. Biomater.
– volume: 325
  start-page: 370
  year: 2020
  end-page: 379
  ident: bib91
  article-title: Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: the impact of cationic lipid selection,
  publication-title: J. Contr. Release
– volume: 7
  start-page: 38
  year: 2019
  ident: bib96
  article-title: Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer
  publication-title: J. Immunother. Canc.
– volume: 328
  start-page: 210
  year: 2020
  end-page: 221
  ident: bib56
  article-title: DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine
  publication-title: J. Contr. Release
– volume: 23
  start-page: 1495
  year: 1995
  end-page: 1501
  ident: bib10
  article-title: A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo
  publication-title: Nucleic. Acids. Res.
– volume: 12
  start-page: 1371
  year: 2020
  ident: bib90
  article-title: A glimmer of hope: recent updates and future challenges in Zika vaccine development,
  publication-title: Viruses
– volume: 25
  start-page: 1467
  year: 2017
  end-page: 1475
  ident: bib23
  article-title: Lipid nanoparticle systems for enabling gene therapies
  publication-title: Mol. Ther.
– volume: 39
  start-page: 2190
  year: 2021
  end-page: 2200
  ident: bib18
  article-title: mRNA vaccines manufacturing: challenges and bottlenecks
  publication-title: Vaccine
– volume: 25
  start-page: 5995
  year: 2020
  ident: bib40
  article-title: Nucleic acid delivery by solid lipid nanoparticles containing switchable lipids: plasmid DNA vs. Messenger RNA
  publication-title: Molecules
– volume: 354
  start-page: 104143
  year: 2020
  ident: bib104
  article-title: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity
  publication-title: Cell. Immunnol.
– volume: 11
  year: 2019
  ident: bib21
  article-title: Nanoscale platforms for messenger RNA delivery, Wiley
  publication-title: Interdiscip. Rev. Nanomed. Nanobiotechnol
– volume: vol. 12
  start-page: 9196
  year: 2018
  end-page: 9205
  ident: bib36
  publication-title: Microfluidics Synthesis of Gene Silencing Cubosomes
– volume: 53
  start-page: 1281
  year: 2020
  end-page: 1295
  ident: bib85
  article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody, generation
  publication-title: Immunity
– volume: 27
  start-page: 836
  year: 2020
  end-page: 847
  ident: bib47
  article-title: F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia
  publication-title: Drug. Deliv.
– volume: 6
  start-page: 11
  year: 2021
  ident: bib79
  article-title: Connections between biomechanics and higher infectivity: a tale of the D614G mutation in the SARS-CoV-2 spike protein
  publication-title: Signal. Transduct. Target. Ther.
– volume: 34
  start-page: 1163
  year: 2021
  end-page: 1166
  ident: bib84
  article-title: Effectiveness of pfizer-BioNTech and Moderna vaccines in preventing SARS-CoV-2 infection among nursing home residents before and during widespread circulation of the SARS-CoV-2 B.1.617.2 (delta) variant - national healthcare safety network
  publication-title: MMWR. Morb. Mortal. Wkly. Rep.
– volume: 228
  start-page: 9
  year: 2016
  end-page: 19
  ident: bib60
  article-title: Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra-and paracellular pathways
  publication-title: J. Contr. Release
– volume: 274
  start-page: 923
  year: 1978
  end-page: 924
  ident: bib5
  article-title: Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes
  publication-title: Nature
– volume: 22
  start-page: 172
  year: 2021
  ident: bib78
  article-title: Tozinameran (BNT162b2) vaccine: the journey from preclinical research to clinical trials and authorization
  publication-title: AAPS. PharmSciTech.
– volume: 17
  start-page: 889
  year: 2018
  end-page: 911
  ident: bib93
  article-title: A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection,
  publication-title: Expert Rev. Vaccines
– volume: 5
  start-page: 1053
  year: 2020
  end-page: 1061
  ident: bib43
  article-title: Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle
  publication-title: Bioact. Mater.
– volume: 8
  start-page: 12459
  year: 2018
  ident: bib76
  article-title: DNA-launched RNA replicon vaccines induce potent anti-Ebolavirus immune responses that can be further improved by a recombinant MVA boost
  publication-title: Sci. Rep.
– volume: 131
  start-page: 1
  year: 2021
  end-page: 15
  ident: bib115
  article-title: Synthetic modified messenger RNA for therapeutic applications
  publication-title: Acta Biomater.
– volume: 133
  start-page: 111059
  year: 2021
  ident: bib101
  article-title: Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes
  publication-title: Biomed. Pharmacother.
– volume: 330
  start-page: 115689
  year: 2021
  ident: bib49
  article-title: DODAB-DOPE liposome surface coating using in-situ acrylic acid polymerization
  publication-title: J. Mol. Liq.
– volume: 4
  year: 2019
  ident: bib94
  article-title: A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection,
  publication-title: Sci. Immunol.
– volume: 27
  start-page: 1231
  year: 2020
  end-page: 1235
  ident: bib19
  article-title: Functional differences between protamine preparations for the transfection of mRNA
  publication-title: Drug Deliv.
– volume: 27
  start-page: 710
  year: 2019
  end-page: 728
  ident: bib22
  article-title: Delivering the messenger: advances in technologies for therapeutic mRNA delivery
  publication-title: Mol. Ther
– volume: 117
  start-page: 189
  year: 1996
  end-page: 194
  ident: bib3
  article-title: Structural organization of the pre-mRNA splicing commitment: a hypothesis,
  publication-title: J. Struct. Biol.
– volume: 8
  start-page: 459
  year: 2017
  end-page: 468
  ident: bib53
  article-title: Cationic nanoliposomes meet mRNA: efficient delivery of modified mRNA using hemocompatible and stable vectors for therapeutic applications
  publication-title: Mol. Ther. - Nucl. Acids
– volume: 222
  start-page: 113582
  year: 2021
  ident: bib66
  article-title: Doxorubicin-loaded natural daptomycin micelles with enhanced targeting and anti-tumor effect in vivo
  publication-title: Eur. J. Med. Chem.
– volume: 314
  start-page: 102
  year: 2019
  end-page: 115
  ident: bib74
  article-title: Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide
  publication-title: J. Contr. Release
– volume: 154-155
  start-page: 37
  year: 2020
  end-page: 63
  ident: bib38
  article-title: Lipid nanoparticles for nucleic acid delivery: current perspectives
  publication-title: Adv. Drug Deliv. Rev.
– volume: 14
  start-page: 2733
  year: 2019
  end-page: 2751
  ident: bib103
  article-title: Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy
  publication-title: Int. J. Nanomed.
– volume: 20
  start-page: 1578
  year: 2020
  end-page: 1589
  ident: bib42
  article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering
  publication-title: Nano. Lett.
– volume: 19
  start-page: 388
  year: 2014
  end-page: 399
  ident: bib2
  article-title: mRNA display: from basic principles to macrocycle drug discovery
  publication-title: Drug Discov. Today
– volume: 32
  start-page: 59
  year: 2018
  ident: bib27
  article-title: Validation and application of a novel cholesterol efflux assay using immobilized liposomes as a substitute for cultured cells
  publication-title: Atherosclerosis Suppl.
– volume: 597
  start-page: 318
  year: 2021
  end-page: 324
  ident: bib7
  article-title: The tangled history of mRNA vaccines,
  publication-title: Nature
– volume: 182
  start-page: 812
  year: 2020
  end-page: 827
  ident: bib80
  article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
– volume: 13
  start-page: 759
  year: 2014
  end-page: 780
  ident: bib15
  article-title: mRNA-based therapeutics—developing a new class of drugs
  publication-title: Nat. Rev. Drug Discov.
– volume: 32
  start-page: 498
  year: 2009
  end-page: 507
  ident: bib69
  article-title: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients
  publication-title: J. Immunother.
– volume: 21
  start-page: 2482
  year: 2020
  end-page: 2492
  ident: bib61
  article-title: Mannosylated poly(ethylene imine) copolymers enhance saRNA uptake and expression in human skin explants
  publication-title: Biomacromolecules
– volume: S1525-0016
  start-page: 310
  year: 2021
  end-page: 315
  ident: bib30
  article-title: Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs
  publication-title: Mol. Ther.
– volume: 17
  start-page: 1996
  year: 2020
  end-page: 2005
  ident: bib114
  article-title: Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes
  publication-title: Mol. Pharmaceut.
– volume: 330
  start-page: 115703
  year: 2021
  ident: bib54
  article-title: Comparative study of cationic liposomes modified with triphenylphosphonium and imidazolium surfactants for mitochondrial delivery
  publication-title: J. Mol. Liq.
– volume: 54
  start-page: 104143
  year: 2020
  ident: bib102
  article-title: Intranasal delivery ofcationic liposome-protamine complex mRNA vaccineelicits effective anti-tumor immunity
  publication-title: Cell. Immunol.
– volume: 235
  start-page: 222
  year: 2016
  end-page: 235
  ident: bib64
  article-title: Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells
  publication-title: J. Contr. Release
– volume: 246
  start-page: 60
  year: 2017
  end-page: 70
  ident: bib65
  article-title: Self-aggregating 1.8 kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon-skipping oligonucleotides
  publication-title: J. Contr. Release
– volume: 14
  start-page: 2733
  year: 2019
  end-page: 2751
  ident: bib116
  article-title: Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy
  publication-title: Int. J. Nanomed.
– volume: 38
  start-page: 7409
  year: 2020
  end-page: 7413
  ident: bib97
  article-title: Protection against herpes simplex virus type 2 infection in a neonatal murine model using a trivalent nucleoside-modified mRNA in lipid nanoparticle vaccine
  publication-title: Vaccine
– volume: 10
  start-page: 871
  year: 2019
  ident: bib110
  article-title: Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes
  publication-title: Nat. Commun.
– volume: 19
  start-page: 650
  year: 2021
  ident: bib20
  article-title: Messenger RNA life-cycle in cancer cells: emerging role of conventional and non-conventional RNA-binding proteins?
  publication-title: Int. J. Mol. Sci.
– volume: 12
  start-page: 1235
  year: 2020
  ident: bib29
  article-title: The phospholipid research center: current research in phospholipids and their use in drug delivery,
  publication-title: Pharmaceutics
– volume: 155
  start-page: 199
  year: 2020
  end-page: 209
  ident: bib33
  article-title: Boost of serum resistance and storage stability in cationic polyprenyl-based lipofection by helper lipids compositions
  publication-title: Eur. J. Pharm. Biopharm
– volume: 17
  start-page: 1644
  year: 2021
  end-page: 1659
  ident: bib82
  article-title: Wnt/β-catenin signaling inhibitors suppress the tumor-initiating properties of a CD44+CD133+subpopulation of caco-2 cells.International
  publication-title: J. Biol. Sci.
– volume: 335
  start-page: 306
  year: 2021
  end-page: 319
  ident: bib50
  article-title: Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy
  publication-title: J. Contr. Release
– volume: 23
  start-page: 2596
  year: 2016
  end-page: 2607
  ident: bib59
  article-title: Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA
  publication-title: Drug Deliv.
– volume: 302
  start-page: 91
  year: 2019
  end-page: 100
  ident: bib112
  article-title: Lipid nanoparticles for delivery of messenger RNA to the back of the eye
  publication-title: J. Contr. Release
– volume: 7
  start-page: 132
  year: 2019
  ident: bib89
  article-title: Advances in RNA vaccines for preventive indications: a case study of A vaccine against rabies,
  publication-title: Vaccines
– volume: 10
  start-page: 267
  year: 2017
  end-page: 278
  ident: bib24
  article-title: Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran
  publication-title: Pharmacogenomics Personalized Med.
– volume: 24
  start-page: 369
  year: 2021
  end-page: 384
  ident: bib41
  article-title: Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein
  publication-title: Mol. Ther- Nucleic. Acids
– volume: 602
  start-page: 120645
  year: 2021
  ident: bib51
  article-title: An update on actively targeted liposomes in advanced drug delivery to glioma
  publication-title: Int. J. Pharmaceut.
– volume: 13
  start-page: 240
  year: 2021
  ident: bib44
  article-title: Conjugation of mannans to enhance the potency of liposome nanoparticles for the delivery of RNA vaccines
  publication-title: Pharmaceutics
– volume: 12
  start-page: 645210
  year: 2021
  ident: bib87
  article-title: Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response
  publication-title: Front. Immunol.
– volume: 70
  start-page: 9031
  year: 2010
  end-page: 9040
  ident: bib12
  article-title: Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity
  publication-title: Cancer Res.
– volume: 141
  start-page: e139
  year: 2020
  end-page: e596
  ident: bib106
  article-title: Heart disease and stroke statistics–2020 update: a report from the American Heart Association
  publication-title: Circulation
– volume: 29
  start-page: 126
  year: 2018
  end-page: 135
  ident: bib67
  article-title: Self-transfecting micellar RNA: Modulating nanoparticle cell interactions via high density display of small molecule ligands on micelle coronas
  publication-title: Bioconjugate Chem.
– volume: 195
  start-page: 23
  year: 2019
  end-page: 27
  ident: bib75
  article-title: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation
  publication-title: Biomaterials
– volume: 220
  start-page: 381
  year: 2012
  end-page: 386
  ident: bib109
  article-title: Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels
  publication-title: Atherosclerosis
– volume: 10
  start-page: 136
  year: 2020
  ident: bib28
  article-title: Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy
  publication-title: 3 Biotech
– volume: 30
  start-page: 461
  year: 2019
  end-page: 475
  ident: bib73
  article-title: mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells
  publication-title: Bioconjugate Chem.
– volume: 373
  start-page: 438
  year: 2015
  end-page: 447
  ident: bib108
  article-title: Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia
  publication-title: N. Engl. J. Med.
– volume: 29
  start-page: 2769
  year: 2021
  end-page: 2781
  ident: bib9
  article-title: Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection
  publication-title: Mol. Ther.
– volume: 110
  start-page: 997
  year: 2021
  end-page: 1001
  ident: bib105
  article-title: Addressing the cold reality of mRNA vaccine stability
  publication-title: J. Pharm. Sci.
– volume: 4
  start-page: 211
  year: 2021
  ident: bib117
  article-title: A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery
  publication-title: Commun. Biol.
– volume: 7
  year: 2021
  ident: bib113
  article-title: Ionizable lipid nanoparticles for in utero mRNA delivery
  publication-title: Sci. Adv.
– volume: 354
  start-page: 104143
  year: 2020
  ident: bib55
  article-title: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity
  publication-title: Cell. Immunnol.
– volume: 17
  start-page: 261
  year: 2018
  end-page: 279
  ident: bib92
  article-title: mRNA vaccines - a new era in vaccinology
  publication-title: Nat. Rev. Drug Discov.
– volume: 2
  start-page: 17056
  year: 2017
  ident: bib16
  article-title: Tools for translation: non- viral materials for therapeutic mRNA delivery
  publication-title: Nat. Rev. Mater.
– volume: 24
  start-page: 102424
  year: 2021
  ident: bib98
  article-title: Immunogenic tumor cell death promotes dendritic cell migration and inhibits tumor growth via enhanced T cell immunity
  publication-title: iScience
– volume: 84
  start-page: 110037
  year: 2021
  ident: bib1
  article-title: Multifaceted control of mRNA translation machinery in cancer
  publication-title: Cell. Signal.
– volume: 8
  start-page: 12459
  year: 2018
  ident: 10.1016/j.ejmech.2021.113910_bib76
  article-title: DNA-launched RNA replicon vaccines induce potent anti-Ebolavirus immune responses that can be further improved by a recombinant MVA boost
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-31003-6
– volume: 6
  start-page: 11
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib79
  article-title: Connections between biomechanics and higher infectivity: a tale of the D614G mutation in the SARS-CoV-2 spike protein
  publication-title: Signal. Transduct. Target. Ther.
  doi: 10.1038/s41392-020-00439-6
– volume: 5
  year: 2016
  ident: 10.1016/j.ejmech.2021.113910_bib13
  article-title: Immune response and long-term clinical outcome in advanced melanoma patients vaccinated with tumor-mRNA-transfected dendritic cells
  publication-title: OncoImmunology
  doi: 10.1080/2162402X.2016.1232237
– volume: 13
  start-page: 759
  year: 2014
  ident: 10.1016/j.ejmech.2021.113910_bib15
  article-title: mRNA-based therapeutics—developing a new class of drugs
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd4278
– volume: 314
  start-page: 102
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib74
  article-title: Effective mRNA pulmonary delivery by dry powder formulation of PEGylated synthetic KL4 peptide
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2019.10.026
– volume: 4
  start-page: 211
  issue: 1
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib117
  article-title: A high-throughput Galectin-9 imaging assay for quantifying nanoparticle uptake, endosomal escape and functional RNA delivery
  publication-title: Commun. Biol.
  doi: 10.1038/s42003-021-01728-8
– volume: 84
  start-page: 110037
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib1
  article-title: Multifaceted control of mRNA translation machinery in cancer
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2021.110037
– volume: 12
  start-page: 1042
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib45
  article-title: Aerosolizable lipid nanoparticles for pulmonary delivery of mRNA through design of experiments
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12111042
– volume: 8
  start-page: 459
  year: 2017
  ident: 10.1016/j.ejmech.2021.113910_bib53
  article-title: Cationic nanoliposomes meet mRNA: efficient delivery of modified mRNA using hemocompatible and stable vectors for therapeutic applications
  publication-title: Mol. Ther. - Nucl. Acids
  doi: 10.1016/j.omtn.2017.07.013
– volume: 14
  start-page: 1175
  year: 2007
  ident: 10.1016/j.ejmech.2021.113910_bib14
  article-title: Spontaneous cellular uptake of exogenous messenger RNA in vivo is nucleic acid-specific, saturable and ion dependent
  publication-title: Gene Ther.
  doi: 10.1038/sj.gt.3302964
– volume: 19
  start-page: 650
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib20
  article-title: Messenger RNA life-cycle in cancer cells: emerging role of conventional and non-conventional RNA-binding proteins?
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms19030650
– volume: 182
  start-page: 1271
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib8
  article-title: A thermostable mRNA vaccine against COVID-19,
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.024
– volume: 29
  start-page: 2769
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib9
  article-title: Lipid-nanoparticle-encapsulated mRNA vaccines induce protective memory CD8 T cells against a lethal viral infection
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2021.05.011
– volume: 117
  start-page: 189
  year: 1996
  ident: 10.1016/j.ejmech.2021.113910_bib3
  article-title: Structural organization of the pre-mRNA splicing commitment: a hypothesis,
  publication-title: J. Struct. Biol.
  doi: 10.1006/jsbi.1996.0082
– volume: 354
  start-page: 104143
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib55
  article-title: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity
  publication-title: Cell. Immunnol.
  doi: 10.1016/j.cellimm.2020.104143
– volume: 383
  start-page: 1544
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib86
  article-title: Evaluation of the mRNA-1273 vaccine against SARS-CoV-2 in nonhuman primates
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa2024671
– volume: 154-155
  start-page: 37
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib38
  article-title: Lipid nanoparticles for nucleic acid delivery: current perspectives
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.06.002
– volume: 27
  start-page: 710
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib22
  article-title: Delivering the messenger: advances in technologies for therapeutic mRNA delivery
  publication-title: Mol. Ther
  doi: 10.1016/j.ymthe.2019.02.012
– volume: 39
  start-page: 2190
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib18
  article-title: mRNA vaccines manufacturing: challenges and bottlenecks
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2021.03.038
– volume: 7
  start-page: 132
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib89
  article-title: Advances in RNA vaccines for preventive indications: a case study of A vaccine against rabies,
  publication-title: Vaccines
  doi: 10.3390/vaccines7040132
– volume: 27
  start-page: 1231
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib19
  article-title: Functional differences between protamine preparations for the transfection of mRNA
  publication-title: Drug Deliv.
  doi: 10.1080/10717544.2020.1790692
– volume: 155
  start-page: 199
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib33
  article-title: Boost of serum resistance and storage stability in cationic polyprenyl-based lipofection by helper lipids compositions
  publication-title: Eur. J. Pharm. Biopharm
  doi: 10.1016/j.ejpb.2020.07.028
– volume: 597
  start-page: 318
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib7
  article-title: The tangled history of mRNA vaccines,
  publication-title: Nature
  doi: 10.1038/d41586-021-02483-w
– volume: 23
  start-page: 2596
  year: 2016
  ident: 10.1016/j.ejmech.2021.113910_bib59
  article-title: Induction of HIV-1 gag specific immune responses by cationic micelles mediated delivery of gag mRNA
  publication-title: Drug Deliv.
  doi: 10.3109/10717544.2015.1038856
– volume: 119
  start-page: 8698
  year: 2015
  ident: 10.1016/j.ejmech.2021.113910_bib35
  article-title: Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems
  publication-title: J. Phys. Chem. B
  doi: 10.1021/acs.jpcb.5b02891
– volume: 22
  start-page: 172
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib78
  article-title: Tozinameran (BNT162b2) vaccine: the journey from preclinical research to clinical trials and authorization
  publication-title: AAPS. PharmSciTech.
  doi: 10.1208/s12249-021-02058-y
– volume: 220
  start-page: 381
  year: 2012
  ident: 10.1016/j.ejmech.2021.113910_bib109
  article-title: Proprotein convertase subtilisin kexin type 9 (PCSK9) secreted by cultured smooth muscle cells reduces macrophages LDLR levels
  publication-title: Atherosclerosis
  doi: 10.1016/j.atherosclerosis.2011.11.026
– volume: 164
  start-page: 640
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib46
  article-title: Composition design and medical application of liposomes
  publication-title: Euro. J. Med. Chem.
  doi: 10.1016/j.ejmech.2019.01.007
– volume: 27
  start-page: 836
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib47
  article-title: F7 and topotecan co-loaded thermosensitive liposome as a nano-drug delivery system for tumor hyperthermia
  publication-title: Drug. Deliv.
  doi: 10.1080/10717544.2020.1772409
– volume: 25
  start-page: 1467
  year: 2017
  ident: 10.1016/j.ejmech.2021.113910_bib23
  article-title: Lipid nanoparticle systems for enabling gene therapies
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.03.013
– volume: 20
  start-page: 1578
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib42
  article-title: Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering
  publication-title: Nano. Lett.
  doi: 10.1021/acs.nanolett.9b04246
– volume: 330
  start-page: 115703
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib54
  article-title: Comparative study of cationic liposomes modified with triphenylphosphonium and imidazolium surfactants for mitochondrial delivery
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.115703
– volume: 53
  start-page: 1281
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib85
  article-title: SARS-CoV-2 mRNA vaccines foster potent antigen-specific germinal center responses associated with neutralizing antibody, generation
  publication-title: Immunity
  doi: 10.1016/j.immuni.2020.11.009
– volume: 18
  start-page: 464
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib111
  article-title: Synthetic mRNA encoding VEGF-A in patients undergoing coronary artery bypass grafting: design of a phase 2a clinical trial
  publication-title: Mol. Ther. Methods Clin. Dev.
  doi: 10.1016/j.omtm.2020.05.030
– volume: 102
  start-page: 341
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib32
  article-title: Hydrophobic scaffolds of pH-sensitive cationic lipids contribute to miscibility with phospholipids and improve the efficiency of delivering short interfering RNA by small-sized lipid nanoparticles
  publication-title: Acta. Biomater.
  doi: 10.1016/j.actbio.2019.11.022
– volume: 328
  start-page: 210
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib56
  article-title: DP7-C-modified liposomes enhance immune responses and the antitumor effect of a neoantigen-based mRNA vaccine
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2020.08.023
– volume: 354
  start-page: 104143
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib104
  article-title: Intranasal delivery of cationic liposome-protamine complex mRNA vaccine elicits effective anti-tumor immunity
  publication-title: Cell. Immunnol.
  doi: 10.1016/j.cellimm.2020.104143
– volume: 141
  start-page: e139
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib106
  article-title: Heart disease and stroke statistics–2020 update: a report from the American Heart Association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000757
– volume: 25
  start-page: 5995
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib40
  article-title: Nucleic acid delivery by solid lipid nanoparticles containing switchable lipids: plasmid DNA vs. Messenger RNA
  publication-title: Molecules
  doi: 10.3390/molecules25245995
– volume: 12
  start-page: 1371
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib90
  article-title: A glimmer of hope: recent updates and future challenges in Zika vaccine development,
  publication-title: Viruses
  doi: 10.3390/v12121371
– volume: 12
  start-page: 1235
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib29
  article-title: The phospholipid research center: current research in phospholipids and their use in drug delivery,
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics12121235
– volume: 231
  start-page: 104948
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib100
  article-title: Effects of lipid composition in cationic liposomes on suppression of mast cell activation
  publication-title: Chem. Phys. Lipids
  doi: 10.1016/j.chemphyslip.2020.104948
– volume: 573
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib31
  article-title: Effect of hydrophobic tails of plier-like cationic lipids on nucleic acid delivery and intracellular trafficking
  publication-title: Int. J. Pharmaceut.
  doi: 10.1016/j.ijpharm.2019.118798
– volume: 184
  start-page: 1171
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib81
  article-title: Circulating SARS-CoV-2 spike N439K variants maintain fitness while evading antibody-mediated immunity
  publication-title: Cell
  doi: 10.1016/j.cell.2021.01.037
– volume: 19
  start-page: 441
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib107
  article-title: RNA therapeutics on the rise
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/d41573-020-00078-0
– volume: 359
  start-page: 153
  year: 2004
  ident: 10.1016/j.ejmech.2021.113910_bib4
  article-title: Replicating and reshaping DNA: a celebration of the jubilee of the double helix
  publication-title: Perspect. Philos. Trans. R. Soc. Lond. B. Biol. Sci.
  doi: 10.1098/rstb.2003.1373
– volume: 182
  start-page: 1271
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib77
  article-title: A thermostable mRNA vaccine against COVID-19
  publication-title: Cell
  doi: 10.1016/j.cell.2020.07.024
– volume: 195
  start-page: 23
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib71
  article-title: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.12.019
– volume: 14
  start-page: 2733
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib103
  article-title: Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S198747
– volume: 38
  start-page: 7409
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib97
  article-title: Protection against herpes simplex virus type 2 infection in a neonatal murine model using a trivalent nucleoside-modified mRNA in lipid nanoparticle vaccine
  publication-title: Vaccine
  doi: 10.1016/j.vaccine.2020.09.079
– volume: S1525-0016
  start-page: 310
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib30
  article-title: Highly efficient CD4+ T cell targeting and genetic recombination using engineered CD4+ cell-homing mRNA-LNPs
  publication-title: Mol. Ther.
– volume: 24
  start-page: 102424
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib98
  article-title: Immunogenic tumor cell death promotes dendritic cell migration and inhibits tumor growth via enhanced T cell immunity
  publication-title: iScience
  doi: 10.1016/j.isci.2021.102424
– volume: 601
  start-page: 120586
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib39
  article-title: mRNA-lipid nanoparticle COVID-19 vaccines: structure and stability
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120586
– volume: 11
  start-page: 809
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib95
  article-title: Hemodynamics of prefrontal cortex in ornithine transcarbamylase deficiency: a twin case study
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2020.00809
– volume: 593
  start-page: 120080
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib58
  article-title: Solely aqueous formulation of hydrophobic cationic polymers for efficient gene delivery
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2020.120080
– volume: 14
  start-page: 2733
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib116
  article-title: Local and systemic delivery of mRNA encoding survivin-T34A by lipoplex for efficient colon cancer gene therapy
  publication-title: Int. J. Nanomed.
  doi: 10.2147/IJN.S198747
– volume: 335
  start-page: 306
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib50
  article-title: Low dose shikonin and anthracyclines coloaded liposomes induce robust immunogenetic cell death for synergistic chemo-immunotherapy
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2021.05.040
– volume: 17
  start-page: 1644
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib82
  article-title: Wnt/β-catenin signaling inhibitors suppress the tumor-initiating properties of a CD44+CD133+subpopulation of caco-2 cells.International
  publication-title: J. Biol. Sci.
– volume: 110
  start-page: 997
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib105
  article-title: Addressing the cold reality of mRNA vaccine stability
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2020.12.006
– volume: 13
  year: 2018
  ident: 10.1016/j.ejmech.2021.113910_bib72
  article-title: mRNA transfection by a Xentryprotamine cell-penetrating peptide is enhanced by TLR antagonist E6446
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0201464
– volume: 23
  start-page: 1495
  year: 1995
  ident: 10.1016/j.ejmech.2021.113910_bib10
  article-title: A Sindbis virus mRNA polynucleotide vector achieves prolonged and high level heterologous gene expression in vivo
  publication-title: Nucleic. Acids. Res.
  doi: 10.1093/nar/23.9.1495
– volume: 274
  start-page: 923
  year: 1978
  ident: 10.1016/j.ejmech.2021.113910_bib5
  article-title: Translation of rabbit globin mRNA introduced by liposomes into mouse lymphocytes
  publication-title: Nature
  doi: 10.1038/274923a0
– volume: 7
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib113
  article-title: Ionizable lipid nanoparticles for in utero mRNA delivery
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.aba1028
– volume: 30
  start-page: 461
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib73
  article-title: mRNA polyplexes with post-conjugated GALA peptides efficiently target, transfect, and activate antigen presenting cells
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.8b00524
– volume: 235
  start-page: 222
  year: 2016
  ident: 10.1016/j.ejmech.2021.113910_bib64
  article-title: Efficient mRNA delivery with graphene oxide-polyethylenimine for generation of footprint-free human induced pluripotent stem cells
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2016.06.007
– volume: vol. 12
  start-page: 9196
  year: 2018
  ident: 10.1016/j.ejmech.2021.113910_bib36
– volume: 10
  start-page: 871
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib110
  article-title: Intradermal delivery of modified mRNA encoding VEGF-A in patients with type 2 diabetes
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-08852-4
– volume: 131
  start-page: 1
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib115
  article-title: Synthetic modified messenger RNA for therapeutic applications
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2021.06.020
– volume: 29
  start-page: 126
  year: 2018
  ident: 10.1016/j.ejmech.2021.113910_bib67
  article-title: Self-transfecting micellar RNA: Modulating nanoparticle cell interactions via high density display of small molecule ligands on micelle coronas
  publication-title: Bioconjugate Chem.
  doi: 10.1021/acs.bioconjchem.7b00657
– volume: 13
  start-page: 240
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib44
  article-title: Conjugation of mannans to enhance the potency of liposome nanoparticles for the delivery of RNA vaccines
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics13020240
– volume: 170
  start-page: 83
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib118
  article-title: Self-assembled mRNA vaccines
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2020.12.014
– volume: 5
  start-page: 1053
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib43
  article-title: Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle
  publication-title: Bioact. Mater.
  doi: 10.1016/j.bioactmat.2020.07.003
– volume: 602
  start-page: 120645
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib51
  article-title: An update on actively targeted liposomes in advanced drug delivery to glioma
  publication-title: Int. J. Pharmaceut.
  doi: 10.1016/j.ijpharm.2021.120645
– volume: 70
  start-page: 9031
  year: 2010
  ident: 10.1016/j.ejmech.2021.113910_bib12
  article-title: Intranodal vaccination with naked antigen-encoding RNA elicits potent prophylactic and therapeutic antitumoral immunity
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-10-0699
– volume: 17
  start-page: 261
  year: 2018
  ident: 10.1016/j.ejmech.2021.113910_bib92
  article-title: mRNA vaccines - a new era in vaccinology
  publication-title: Nat. Rev. Drug Discov.
  doi: 10.1038/nrd.2017.243
– volume: 24
  start-page: 369
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib41
  article-title: Functionalized lipid nanoparticles for subcutaneous administration of mRNA to achieve systemic exposures of a therapeutic protein
  publication-title: Mol. Ther- Nucleic. Acids
  doi: 10.1016/j.omtn.2021.03.008
– volume: 54
  start-page: 104143
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib102
  article-title: Intranasal delivery ofcationic liposome-protamine complex mRNA vaccineelicits effective anti-tumor immunity
  publication-title: Cell. Immunol.
  doi: 10.1016/j.cellimm.2020.104143
– volume: 1863
  start-page: 183627
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib25
  article-title: Acidic pH-induced changes in lipid nanoparticle membrane packing
  publication-title: BBA - Biomembranes
  doi: 10.1016/j.bbamem.2021.183627
– volume: vol. 4
  start-page: 2077
  year: 2010
  ident: 10.1016/j.ejmech.2021.113910_bib34
– volume: 222
  start-page: 113582
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib66
  article-title: Doxorubicin-loaded natural daptomycin micelles with enhanced targeting and anti-tumor effect in vivo
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2021.113582
– volume: 335
  start-page: 449
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib57
  article-title: The investigation of mRNA vaccines formulated in liposomes, administrated in multiple routes against SARS-CoV-2
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2021.05.024
– volume: 7
  start-page: 38
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib96
  article-title: Phase Ib evaluation of a self-adjuvanted protamine formulated mRNA-based active cancer immunotherapy, BI1361849 (CV9202), combined with local radiation treatment in patients with stage IV non-small cell lung cancer
  publication-title: J. Immunother. Canc.
  doi: 10.1186/s40425-019-0520-5
– volume: 133
  start-page: 111059
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib101
  article-title: Paclitaxel antitumor effect improvement in lung cancer and prevention of the painful neuropathy using large pegylated cationic liposomes
  publication-title: Biomed. Pharmacother.
  doi: 10.1016/j.biopha.2020.111059
– volume: 5
  start-page: 251
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib99
  article-title: Cancer vaccines: shared tumor antigens return to the spotlight
  publication-title: Signal. Transduct. Target. Ther.
  doi: 10.1038/s41392-020-00364-8
– volume: 18
  start-page: 702
  year: 2011
  ident: 10.1016/j.ejmech.2021.113910_bib11
  article-title: Selective uptake of naked vaccine RNA by dendritic cells is driven by micropinocytosis and abrogated upon DC maturation
  publication-title: Gene Ther.
  doi: 10.1038/gt.2011.17
– volume: 195
  start-page: 23
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib75
  article-title: Poly(lactic acid) nanoparticles and cell-penetrating peptide potentiate mRNA-based vaccine expression in dendritic cells triggering their activation
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2018.12.019
– volume: 25
  start-page: 1663
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib83
  article-title: COVID-19 vaccines: comparison of biological, pharmacological characteristics and adverse effects of Pfizer/BioNTech and Moderna Vaccines
  publication-title: Eur. Rev. Med. Pharmacol. Sci.
– volume: 373
  start-page: 438
  year: 2015
  ident: 10.1016/j.ejmech.2021.113910_bib108
  article-title: Antisense inhibition of apolipoprotein C-III in patients with hypertriglyceridemia
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1400283
– volume: 6
  start-page: 1601412
  year: 2017
  ident: 10.1016/j.ejmech.2021.113910_bib70
  article-title: Arginine-rich peptide-based mRNA nanocomplexes efficiently instigate cytotoxic T cell immunity dependent on the amphipathic organization of the peptide
  publication-title: Adv. Healthc. Mater
  doi: 10.1002/adhm.201601412
– volume: 246
  start-page: 60
  year: 2017
  ident: 10.1016/j.ejmech.2021.113910_bib65
  article-title: Self-aggregating 1.8 kDa polyethylenimines with dissolution switch at endosomal acidic pH are delivery carriers for plasmid DNA, mRNA, siRNA and exon-skipping oligonucleotides
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2016.12.005
– volume: 12
  start-page: 645210
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib87
  article-title: Vaccine inoculation route modulates early immunity and consequently antigen-specific immune response
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2021.645210
– volume: 601
  start-page: 120529
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib52
  article-title: Nucleic acids delivered by PEGylated cationic liposomes in systemic lupus erythematosus-prone mice: a possible exacerbation of lupus nephritis in the presence of pre-existing anti-nucleic acid antibodies, Int
  publication-title: J. Pharm. (Lahore)
  doi: 10.1016/j.ijpharm.2021.120529
– volume: 32
  start-page: 498
  year: 2009
  ident: 10.1016/j.ejmech.2021.113910_bib69
  article-title: Direct injection of protamine-protected mRNA: results of a phase 1/2 vaccination trial in metastatic melanoma patients
  publication-title: J. Immunother.
  doi: 10.1097/CJI.0b013e3181a00068
– volume: 10
  start-page: 136
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib28
  article-title: Formulation and characterization of folate receptor-targeted PEGylated liposome encapsulating bioactive compounds from Kappaphycus alvarezii for cancer therapy
  publication-title: 3 Biotech
  doi: 10.1007/s13205-020-2132-7
– volume: 4
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib94
  article-title: A lipid-encapsulated mRNA encoding a potently neutralizing human monoclonal antibody protects against chikungunya infection,
  publication-title: Sci. Immunol.
  doi: 10.1126/sciimmunol.aaw6647
– volume: 19
  start-page: 388
  year: 2014
  ident: 10.1016/j.ejmech.2021.113910_bib2
  article-title: mRNA display: from basic principles to macrocycle drug discovery
  publication-title: Drug Discov. Today
  doi: 10.1016/j.drudis.2013.10.011
– volume: 26
  start-page: 446
  year: 2018
  ident: 10.1016/j.ejmech.2021.113910_bib62
  article-title: Self-amplifying RNA vaccines give equivalent protection against influenza to mRNA vaccines but at much lower doses
  publication-title: Mol. Ther.
  doi: 10.1016/j.ymthe.2017.11.017
– volume: 163
  start-page: 179
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib17
  article-title: Sustained release of PKR inhibitor C16 from mesoporous silica nanoparticles significantly enhances mRNA translation and anti-tumor vaccination
  publication-title: Eur. J. Pharm. Biopharm
  doi: 10.1016/j.ejpb.2021.03.011
– volume: 17
  start-page: 1996
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib114
  article-title: Intranasal delivery and transfection of mRNA therapeutics in the brain using cationic liposomes
  publication-title: Mol. Pharmaceut.
  doi: 10.1021/acs.molpharmaceut.0c00170
– volume: 316
  start-page: 404
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib26
  article-title: Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2019.10.028
– volume: 325
  start-page: 370
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib91
  article-title: Delivery of self-amplifying mRNA vaccines by cationic lipid nanoparticles: the impact of cationic lipid selection,
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2020.06.027
– volume: 10
  start-page: 267
  year: 2017
  ident: 10.1016/j.ejmech.2021.113910_bib24
  article-title: Update on the clinical utility of an RNA interference-based treatment: focus on Patisiran
  publication-title: Pharmacogenomics Personalized Med.
  doi: 10.2147/PGPM.S87945
– volume: 34
  start-page: 1163
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib84
  article-title: Effectiveness of pfizer-BioNTech and Moderna vaccines in preventing SARS-CoV-2 infection among nursing home residents before and during widespread circulation of the SARS-CoV-2 B.1.617.2 (delta) variant - national healthcare safety network
  publication-title: MMWR. Morb. Mortal. Wkly. Rep.
  doi: 10.15585/mmwr.mm7034e3
– volume: 109
  start-page: 1581
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib63
  article-title: Efficiency of chitosan/hyaluronan-based mRNA delivery systems in vitro: influence of composition and structure
  publication-title: J. Pharm. Sci.
  doi: 10.1016/j.xphs.2019.12.020
– volume: 17
  start-page: 889
  year: 2018
  ident: 10.1016/j.ejmech.2021.113910_bib93
  article-title: A fifty-year odyssey: prospects for a cytomegalovirus vaccine in transplant and congenital infection,
  publication-title: Expert Rev. Vaccines
  doi: 10.1080/14760584.2018.1526085
– volume: 32
  start-page: 59
  year: 2018
  ident: 10.1016/j.ejmech.2021.113910_bib27
  article-title: Validation and application of a novel cholesterol efflux assay using immobilized liposomes as a substitute for cultured cells
  publication-title: Atherosclerosis Suppl.
  doi: 10.1016/j.atherosclerosissup.2018.04.177
– volume: 182
  start-page: 812
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib80
  article-title: Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus
  publication-title: Cell
  doi: 10.1016/j.cell.2020.06.043
– volume: 274
  start-page: 921
  year: 1978
  ident: 10.1016/j.ejmech.2021.113910_bib6
  article-title: Evidence for translation of rabbit globin mRNA after liposome-mediated insertion into a human cell line
  publication-title: Nature
  doi: 10.1038/274921a0
– volume: 11
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib21
  article-title: Nanoscale platforms for messenger RNA delivery, Wiley
  publication-title: Interdiscip. Rev. Nanomed. Nanobiotechnol
– volume: 604
  start-page: 120711
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib48
  article-title: Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2021.120711
– volume: 228
  start-page: 9
  year: 2016
  ident: 10.1016/j.ejmech.2021.113910_bib60
  article-title: Enhanced intranasal delivery of mRNA vaccine by overcoming the nasal epithelial barrier via intra-and paracellular pathways
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2016.02.043
– volume: 330
  start-page: 115689
  year: 2021
  ident: 10.1016/j.ejmech.2021.113910_bib49
  article-title: DODAB-DOPE liposome surface coating using in-situ acrylic acid polymerization
  publication-title: J. Mol. Liq.
  doi: 10.1016/j.molliq.2021.115689
– volume: 302
  start-page: 91
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib112
  article-title: Lipid nanoparticles for delivery of messenger RNA to the back of the eye
  publication-title: J. Contr. Release
  doi: 10.1016/j.jconrel.2019.04.015
– volume: 1
  year: 2012
  ident: 10.1016/j.ejmech.2021.113910_bib37
  article-title: Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA
  publication-title: Mol. Ther. Nucleic Acids
  doi: 10.1038/mtna.2012.28
– volume: 30
  start-page: 1210
  year: 2012
  ident: 10.1016/j.ejmech.2021.113910_bib88
  article-title: Protective effica-cy of in vitro synthesized, specific mRNA vaccines against infl-uenza A virus infection
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.2436
– volume: 21
  start-page: 2482
  year: 2020
  ident: 10.1016/j.ejmech.2021.113910_bib61
  article-title: Mannosylated poly(ethylene imine) copolymers enhance saRNA uptake and expression in human skin explants
  publication-title: Biomacromolecules
  doi: 10.1021/acs.biomac.0c00445
– volume: 2
  start-page: 17056
  year: 2017
  ident: 10.1016/j.ejmech.2021.113910_bib16
  article-title: Tools for translation: non- viral materials for therapeutic mRNA delivery
  publication-title: Nat. Rev. Mater.
  doi: 10.1038/natrevmats.2017.56
– volume: 9
  start-page: 67
  year: 2019
  ident: 10.1016/j.ejmech.2021.113910_bib68
  article-title: Preparation of messenger RNA nanomicelles via non-cytotoxic PEG-polyamine nanocomplex for intracerebroventicular delivery: a proof-of-concept study in mouse models,
  publication-title: Nanomaterials
  doi: 10.3390/nano9010067
SSID ssj0005600
Score 2.609173
SecondaryResourceType review_article
Snippet The current COVID-19 epidemic has greatly accelerated the application of mRNA technology to our real world, and during this battle mRNA has proven it's unique...
SourceID pubmedcentral
proquest
pubmed
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 113910
SubjectTerms Applications
COVID-19
COVID-19 - prevention & control
COVID-19 - virology
COVID-19 Vaccines - administration & dosage
COVID-19 Vaccines - chemistry
Humans
Liposomes - chemistry
Material
Micelles
mRNA
Nano delivery system
Nanoparticle Drug Delivery System - chemistry
Nanoparticles - chemistry
Peptides - chemistry
RNA, Messenger - chemistry
RNA, Messenger - metabolism
SARS-CoV-2 - isolation & purification
Title The nano delivery systems and applications of mRNA
URI https://dx.doi.org/10.1016/j.ejmech.2021.113910
https://www.ncbi.nlm.nih.gov/pubmed/34689071
https://www.proquest.com/docview/2585897938
https://pubmed.ncbi.nlm.nih.gov/PMC8497955
Volume 227
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1RT9swED4h9jBeJsbGVgbIkxBPZG1iO7EfqwpUmKjQBhJvlu3YWhGkiJaHvuy3c46T0g4kpL3GdmLdWXefc3ffARxIL60TIk1s4XsJkzZLpHBoDK3R2vsepTWV0vkoH16xs2t-vQaDthYmpFU2tj_a9NpaN0-6jTS79-Nx9zd6H0QPlGUh0M9lKDRnrAin_MffpTSPPJah4ORw6WJt-Vyd4-Vu7lwdksjS0NxEhjra193TS_j5bxblkls62YQPDZ4k_bjlj7Dmqi14P2jbuG3B4UUkp54fkcvnWqvpETkkF8-01fNPkOEwqXQ1IaW7DdkacxJpnqdEVyVZjnSTiSd3v0b9z3B1cnw5GCZNR4XEspzOktwXomRSUMtNUVLGqE59bhElat3LtC69Ka3lvDA6Tw3zlJdaI6CzKaoDoSPdhvVqUrmvQDyVDifYzDvDEEMKYdK8xMui48ZrajpAW0Eq29CNh64Xt6rNK7tRUfwqiF9F8XcgWay6j3Qbb8wvWh2plWOj0CO8sfJ7q1KFGglhEl25yeNUZXiDEhLtlujAl6jixV4oy4VEVIbfXVH-YkJg614dqcZ_atZuwfCdnO_8946_wUYWai_C_x--C-uzh0e3h4hoZvbrI78P7_qnP4ejJ__aDCQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT9swED-x8sBepsG-ug_mSRNPRG1iO7Efq2qoDKjQViTeLNuxRRGkaC0P_e93jpOWMiSkvcbnxLpL7n7O3f0M8F16aZ0QaWIL30-YtFkihUNnaI3W3vcpramUzsb56IL9vOSXWzBse2FCWWXj-6NPr711c6XXaLN3N532fmP0QfRAWRYS_VzyF7Ad2Kl4B7YHxyej8brSI4-dKCgf9l2s7aCry7zc9a2rsxJZGs43kaGV9ukI9S8CfVxI-SAyHb2GVw2kJIO46l3YctUe7Azbk9z24OA88lMvD8lk3W41PyQH5HzNXL18AxkOk0pXM1K6m1CwsSSR6XlOdFWSh8luMvPk9td48BYujn5MhqOkOVQhsSyniyT3hSiZFNRyU5SUMapTn1sEilr3M61Lb0prOS-MzlPDPOWl1ojpbIoWQfRI30GnmlXuAxBPpUMBm3lnGMJIIUyal7hfdNx4TU0XaKtIZRvG8XDwxY1qS8uuVVS_CupXUf1dSFaz7iLjxjPyRWsjtfHmKAwKz8z81ppUoUVCpkRXbnY_VxluooRE1yW68D6aeLUWynIhEZjhczeMvxIIhN2bI9X0qibuFgzvyfnH_17xV9gZTc5O1enx-OQTvMxCK0b4HcQ_Q2fx5959QYC0MPvNB_AXIt4O1Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+nano+delivery+systems+and+applications+of+mRNA&rft.jtitle=European+journal+of+medicinal+chemistry&rft.au=Li%2C+Mingyuan&rft.au=Li%2C+Yuan&rft.au=Li%2C+Shiqin&rft.au=Jia%2C+Lin&rft.date=2022-01-05&rft.issn=0223-5234&rft.volume=227&rft.spage=113910&rft_id=info:doi/10.1016%2Fj.ejmech.2021.113910&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejmech_2021_113910
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0223-5234&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0223-5234&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0223-5234&client=summon