A Common Structural Motif in the Binding of Virulence Factors to Bacterial Secretion Chaperones

Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contr...

Full description

Saved in:
Bibliographic Details
Published inMolecular cell Vol. 21; no. 5; pp. 653 - 664
Main Authors Lilic, Mirjana, Vujanac, Milos, Stebbins, C. Erec
Format Journal Article
LanguageEnglish
Published United States Elsevier Inc 03.03.2006
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Salmonella invasion protein A (SipA) is translocated into host cells by a type III secretion system (T3SS) and comprises two regions: one domain binds its cognate type III secretion chaperone, InvB, in the bacterium to facilitate translocation, while a second domain functions in the host cell, contributing to bacterial uptake by polymerizing actin. We present here the crystal structures of the SipA chaperone binding domain (CBD) alone and in complex with InvB. The SipA CBD is found to consist of a nonglobular polypeptide as well as a large globular domain, both of which are necessary for binding to InvB. We also identify a structural motif that may direct virulence factors to their cognate chaperones in a diverse range of pathogenic bacteria. Disruption of this structural motif leads to a destabilization of several chaperone-substrate complexes from different species, as well as an impairment of secretion in Salmonella.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1097-2765
1097-4164
DOI:10.1016/j.molcel.2006.01.026