Reuse of Zeolite By-Products Derived from Petroleum Refining for Sustainable Roads

The reduction in consumption of natural resources (fuel, gas, etc.) and contaminant emissions (CO2, CO, NOx, etc.) during the production of asphalt mixtures has become one of the main challenges in road engineering. Warm mix asphalts (WMAs) have been developed in order to achieve this objective whil...

Full description

Saved in:
Bibliographic Details
Published inAdvances in materials science and engineering Vol. 2019; no. 2019; pp. 1 - 10
Main Authors Pérez-Mena, V., Rubio-Gámez, M. C., Moreno-Navarro, F., Sol-Sánchez, M., Cabanillas, P.
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 01.01.2019
Hindawi
Hindawi Limited
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The reduction in consumption of natural resources (fuel, gas, etc.) and contaminant emissions (CO2, CO, NOx, etc.) during the production of asphalt mixtures has become one of the main challenges in road engineering. Warm mix asphalts (WMAs) have been developed in order to achieve this objective while ensuring the mechanical performance and durability of traditional hot mix asphalts (HMAs). However, these materials are commonly manufactured using additives or products whose production could reduce both their environmental benefits and cost effectiveness. This paper presents a research study that aims to analyse the reuse of zeolite wastes derived from petroleum refining in the production of warm mix asphalts. For this purpose, two different types of zeolite wastes were analysed as additives for the manufacture of two warm mix asphalts, whose mechanical performance was compared with conventional WMA and hot mix asphalt. The results indicate that zeolite wastes with a lower particles size presented higher capacity to absorb water, while its dosage at 0.3% allows for producing warm mix asphalts at temperatures around 145°C, with comparable workability and densification to conventional HMA at 165°C without reducing its bearing capacity, fatigue life, and resistance to water action and plastic deformation.
ISSN:1687-8434
1687-8442
DOI:10.1155/2019/4256989