Influence of Pore Structure on Chloride Penetration in Cement Pastes Subject to Wetting-Drying Cycles

Copious studies have discovered a phenomenon that a chloride concentration peak appears on the surface of concrete under cyclic drying-wetting environments. In such cases, the chloride diffusion coefficient (D) obtained through directly fitting the standard error function of Fick’s second law is no...

Full description

Saved in:
Bibliographic Details
Published inAdvances in materials science and engineering Vol. 2019; no. 2019; pp. 1 - 10
Main Authors Ge, Zhi, Wang, Fei, Qu, Mingyue, Zuo, Zhiwu, Chang, Honglei, Liu, Jian
Format Journal Article
LanguageEnglish
Published Cairo, Egypt Hindawi Publishing Corporation 2019
Hindawi
John Wiley & Sons, Inc
Wiley
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Copious studies have discovered a phenomenon that a chloride concentration peak appears on the surface of concrete under cyclic drying-wetting environments. In such cases, the chloride diffusion coefficient (D) obtained through directly fitting the standard error function of Fick’s second law is no longer accurate. The more reliable D obtained by the method proposed by Andrade is employed in this research to investigate the influence of pore structure on chloride penetration rate of pastes. The results show that both the effective coefficient (Deff) and the apparent coefficient (Dapp) increase with total porosity, the most probable pore size, and water absorption porosity, suggesting that the increase of the three pore structure parameters accelerates chloride penetration rate under cyclic wetting-drying condition. The increase of the three parameters makes more room available and eases the difficulty for salt solution to enter the matrix and thus leads to the augmentation of chloride transporting in matrix.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1687-8434
1687-8442
DOI:10.1155/2019/3909348