Moving target feature extraction for airborne high-range resolution phased-array radar
We study the feature extraction of moving targets in the presence of temporally and spatially correlated ground clutter for airborne high-range resolution (HRR) phased-array radar. To avoid the range migration problems that occur in HRR radar data, we first divide the HRR range profiles into low-ran...
Saved in:
Published in | IEEE transactions on signal processing Vol. 49; no. 2; pp. 277 - 289 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
New York, NY
IEEE
01.02.2001
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
ISSN | 1053-587X 1941-0476 |
DOI | 10.1109/78.902110 |
Cover
Summary: | We study the feature extraction of moving targets in the presence of temporally and spatially correlated ground clutter for airborne high-range resolution (HRR) phased-array radar. To avoid the range migration problems that occur in HRR radar data, we first divide the HRR range profiles into low-range resolution (LRR) segments. Since each LRR segment contains a sequence of HRR range bins, no information is lost due to the division, and hence, no loss of resolution occurs. We show how to use a vector auto-regressive (VAR) filtering technique to suppress the ground clutter, Then, a parameter estimation algorithm is proposed for target feature extraction. From the VAR-filtered data, the target Doppler frequency and the spatial signature vectors are first estimated by using a maximum likelihood (ML) method. The target phase history and direction-of-arrival (DOA) (or the array steering vector for an unknown array manifold) are then estimated from the spatial signature vectors by minimizing a weighted least squares (WLS) cost function. The target radar cross section (RCS)-related complex amplitude and range-related frequency of each target scatterer are then extracted from the estimated target phase history by using RELAX, which is a relaxation-based high-resolution feature extraction algorithm. Numerical results are provided to demonstrate the performance of the proposed algorithm. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 1053-587X 1941-0476 |
DOI: | 10.1109/78.902110 |