Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production

[Display omitted] •A biomass concentration of 9.9 g/L was achieved in real swine wastewater.•The highest carbohydrate productivity of 944 mg/L·d was obtained.•The highest COD (81%), TN (96%) and TP (nearly 100%) removals were achieved.•Semi-continuous operation was performed together with direct bio...

Full description

Saved in:
Bibliographic Details
Published inBioresource Technology Vol. 305; p. 123072
Main Authors Qu, Wenying, Loke Show, Pau, Hasunuma, Tomohisa, Ho, Shih-Hsin
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 01.06.2020
Elsevier BV
Subjects
Online AccessGet full text

Cover

Loading…
Abstract [Display omitted] •A biomass concentration of 9.9 g/L was achieved in real swine wastewater.•The highest carbohydrate productivity of 944 mg/L·d was obtained.•The highest COD (81%), TN (96%) and TP (nearly 100%) removals were achieved.•Semi-continuous operation was performed together with direct bioethanol production. This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.
AbstractList This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.
This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.
[Display omitted] •A biomass concentration of 9.9 g/L was achieved in real swine wastewater.•The highest carbohydrate productivity of 944 mg/L·d was obtained.•The highest COD (81%), TN (96%) and TP (nearly 100%) removals were achieved.•Semi-continuous operation was performed together with direct bioethanol production. This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.
ArticleNumber 123072
Author Loke Show, Pau
Hasunuma, Tomohisa
Ho, Shih-Hsin
Qu, Wenying
Author_xml – sequence: 1
  givenname: Wenying
  surname: Qu
  fullname: Qu, Wenying
  organization: State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
– sequence: 2
  givenname: Pau
  surname: Loke Show
  fullname: Loke Show, Pau
  organization: Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia
– sequence: 3
  givenname: Tomohisa
  surname: Hasunuma
  fullname: Hasunuma, Tomohisa
  organization: Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan
– sequence: 4
  givenname: Shih-Hsin
  surname: Ho
  fullname: Ho, Shih-Hsin
  email: stephen6949@hit.edu.cnstep, hen6949@msn.com
  organization: State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
BackLink https://cir.nii.ac.jp/crid/1872835442858332672$$DView record in CiNii
https://www.ncbi.nlm.nih.gov/pubmed/32163881$$D View this record in MEDLINE/PubMed
BookMark eNqFUs1q3DAYFCWl2aR9haBDD714qx_bsqGHliX9gUAotJSehCx9zmqxpa2kzeI-Ux-ycpztoZdcJBhmvtE3owt05rwDhK4oWVNC67e7dWd9SKC3a0ZYBhkngj1DK9oIXrBW1GdoRdqaFE3FynN0EeOOEMKpYC_QOWe05k1DV-jP7T7Z0f627g4HUAOOR-sAH1VMcFQJAk4ZTiO4hKHvrbbg9ISVM1ir0PntZEKm4X3w5qCTvbdpwr7HDo7DhEerg1fDncKb7aDGyfjROxVx3K_x1x8_ucCHCAb3PmANw1AYG_eDmjKUt4O0Vc4P_0Z79xI979UQ4dXjfYm-f7z-tvlc3Nx--rL5cFPosuapYFxTRcqWal4LLWrKYQ6krTroSkX6pmwrIFB1PfSqM43oeaeV4TUTXJW645fozTI3W_86QExytHF-oHLgD1EyLgTnbct4pl49Ug_dCEbugx1VmOQp4Ux4txByEjEG6KW2Sc3bpKDsICmRc6FyJ0-FyrlQuRSa5fV_8pPDk8LXi9BZmy3nM38N1vCqLFlTNZyz-oH2fqFBzvPeQpDxoWIwNoBO0nj7lNNf2yHNog
CitedBy_id crossref_primary_10_1016_j_cej_2020_126345
crossref_primary_10_1016_j_fuel_2024_132017
crossref_primary_10_2174_1381612828666220406125132
crossref_primary_10_1016_j_chemosphere_2020_129330
crossref_primary_10_1016_j_biortech_2023_128605
crossref_primary_10_1016_j_algal_2021_102523
crossref_primary_10_1007_s12155_022_10562_7
crossref_primary_10_1016_j_biortech_2021_125414
crossref_primary_10_1016_j_biortech_2021_126304
crossref_primary_10_1016_j_biortech_2020_124125
crossref_primary_10_1016_j_jwpe_2024_104828
crossref_primary_10_1039_D1SE01740C
crossref_primary_10_1016_j_enconman_2021_114330
crossref_primary_10_1016_j_jhazmat_2022_129785
crossref_primary_10_1007_s11101_022_09819_y
crossref_primary_10_1016_j_scitotenv_2024_171557
crossref_primary_10_1016_j_cej_2024_149222
crossref_primary_10_3390_horticulturae9030308
crossref_primary_10_1016_j_biortech_2023_129620
crossref_primary_10_1016_j_watres_2022_119486
crossref_primary_10_3390_cells13131137
crossref_primary_10_1016_j_biortech_2023_128730
crossref_primary_10_1016_j_biortech_2024_130613
crossref_primary_10_1016_j_jclepro_2020_124522
crossref_primary_10_1016_j_jhazmat_2021_126625
crossref_primary_10_1016_j_chemosphere_2022_137094
crossref_primary_10_1016_j_biortech_2020_123858
crossref_primary_10_1016_j_rser_2021_111464
crossref_primary_10_1016_j_rser_2023_113245
crossref_primary_10_1039_D3SE00237C
crossref_primary_10_1016_j_algal_2023_103177
crossref_primary_10_1016_j_biortech_2022_128119
crossref_primary_10_1016_j_envres_2022_112965
crossref_primary_10_1016_j_jenvman_2020_111534
crossref_primary_10_1186_s13068_023_02409_w
crossref_primary_10_1016_j_chemosphere_2021_132863
crossref_primary_10_1016_j_jhazmat_2021_126264
crossref_primary_10_1016_j_jece_2020_104926
crossref_primary_10_1007_s13399_020_01214_x
crossref_primary_10_1016_j_clwat_2024_100018
crossref_primary_10_1007_s11356_022_22799_y
crossref_primary_10_1016_j_bej_2021_108129
crossref_primary_10_1016_j_biortech_2022_126886
crossref_primary_10_1016_j_heliyon_2021_e07115
crossref_primary_10_1016_j_envpol_2022_119688
crossref_primary_10_1016_j_jclepro_2022_132114
crossref_primary_10_1016_j_jenvman_2022_114612
crossref_primary_10_1371_journal_pone_0249089
crossref_primary_10_1007_s40726_024_00294_x
crossref_primary_10_1016_j_biortech_2022_127086
crossref_primary_10_1002_biot_202100603
crossref_primary_10_1007_s11157_021_09587_9
crossref_primary_10_3390_en16010531
crossref_primary_10_1016_j_jhazmat_2020_124762
crossref_primary_10_1111_gcbb_13136
crossref_primary_10_1016_j_biortech_2021_126056
crossref_primary_10_1016_j_jece_2023_109870
crossref_primary_10_1016_j_jenvman_2022_115284
crossref_primary_10_1016_j_chemosphere_2022_133596
crossref_primary_10_1007_s13399_020_01061_w
crossref_primary_10_1016_j_matpr_2022_03_551
crossref_primary_10_1016_j_biortech_2020_124496
crossref_primary_10_1016_j_biotechadv_2021_107885
crossref_primary_10_1016_j_chemosphere_2023_139235
crossref_primary_10_1016_j_psep_2022_04_061
crossref_primary_10_1007_s13762_021_03270_w
crossref_primary_10_1007_s13399_023_04233_6
crossref_primary_10_1016_j_jclepro_2022_131153
Cites_doi 10.1016/j.biortech.2016.07.080
10.1016/j.ecoleng.2016.05.066
10.1016/j.scitotenv.2016.06.100
10.1039/C9GC02634G
10.1016/j.resconrec.2015.05.013
10.1016/j.biortech.2019.121925
10.1016/0921-3449(95)00028-H
10.1016/j.enconman.2018.03.020
10.1016/j.biortech.2014.11.099
10.1016/j.biortech.2015.11.082
10.1016/j.biortech.2017.03.122
10.1016/j.biotechadv.2014.09.002
10.1016/j.heliyon.2017.e00496
10.1016/j.biortech.2018.02.025
10.1016/j.rser.2015.05.024
10.1016/j.resconrec.2014.04.011
10.1016/j.biortech.2011.11.133
10.1016/j.biortech.2018.10.057
10.1016/S0304-3894(03)00222-X
10.1007/s10499-019-00385-3
10.1007/BF00318659
10.1016/j.jare.2019.05.004
10.1016/j.biortech.2012.12.017
10.1016/j.biortech.2019.122299
10.1016/j.apenergy.2011.03.012
10.1016/j.biortech.2013.05.043
10.1016/j.biortech.2018.07.142
10.1016/j.ecoleng.2006.06.001
10.1016/j.watres.2019.05.008
10.1016/j.biortech.2016.05.059
10.1016/j.scitotenv.2017.10.059
10.1016/j.resconrec.2017.01.008
10.1128/MMBR.35.2.171-205.1971
10.1002/bit.26252
10.1016/j.biortech.2015.09.067
10.1016/j.biortech.2018.12.019
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright © 2020 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright © 2020 Elsevier Ltd. All rights reserved.
DBID RYH
AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.biortech.2020.123072
DatabaseName CiNii Complete
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Agriculture
EISSN 1873-2976
ExternalDocumentID 32163881
10_1016_j_biortech_2020_123072
S0960852420303412
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9JM
9JN
AAAJQ
AABNK
AABVA
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AARKO
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABGSF
ABJNI
ABLST
ABMAC
ABNUV
ABUDA
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADQTV
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGRDE
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLECG
BLXMC
CBWCG
CJTIS
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLV
HMC
HVGLF
HZ~
IHE
J1W
JARJE
KCYFY
KOM
LUGTX
LW9
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SAB
SAC
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSA
SSG
SSI
SSJ
SSR
SSU
SSZ
T5K
VH1
WUQ
Y6R
~02
~G-
~KM
AAHBH
AATTM
AAXKI
AAYWO
ACVFH
ADCNI
AEIPS
AEUPX
AFPUW
AGCQF
AGRNS
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
RYH
SSH
AAYXX
ABWVN
ACRPL
ADNMO
AEGFY
AFJKZ
AGQPQ
AIGII
CITATION
EFKBS
NPM
7X8
ID FETCH-LOGICAL-c463t-23c1a0491c367c7613e297695beb4a0f8495e0e5bfefabd87f3bcad36273a4cb3
IEDL.DBID .~1
ISSN 0960-8524
1873-2976
IngestDate Fri Jul 11 07:09:23 EDT 2025
Mon Jul 21 06:00:23 EDT 2025
Tue Jul 01 03:18:41 EDT 2025
Thu Apr 24 23:10:16 EDT 2025
Thu Jun 26 21:40:55 EDT 2025
Fri Feb 23 02:48:06 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cell-displayed technology
Microalgae
Carbohydrate
Bioethanol
Real swine wastewater
Language English
License Copyright © 2020 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c463t-23c1a0491c367c7613e297695beb4a0f8495e0e5bfefabd87f3bcad36273a4cb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8382-2362
0000-0002-9884-1080
PMID 32163881
PQID 2377339923
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2377339923
pubmed_primary_32163881
crossref_citationtrail_10_1016_j_biortech_2020_123072
crossref_primary_10_1016_j_biortech_2020_123072
nii_cinii_1872835442858332672
elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123072
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-06-01
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Bioresource Technology
PublicationTitleAlternate Bioresour Technol
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Wu, Cen, Addy, Zheng, Luo, Liu, Cheng, Zhou, Chen, Ruan (b0205) 2019; 292
Ho, Chen, Chang (b0065) 2012; 113
Qu, Zhang, Zhang, Ho (b0145) 2019
Huang, Bai, Liu, Hasunuma, Kondo, Ho (b0090) 2020; 22
Ho, Kondo, Hasunuma, Chang (b0075) 2013; 143
Wang, Ho, Cheng, Nagarajan, Guo, Lin, Li, Ren, Chang (b0195) 2017; 242
Wang, Ni, Cheng, Xu, Zhao, Zhou (b0200) 2019; 20
Ho, Ye, Hasunuma, Chang, Kondo (b0085) 2014; 32
Li, Zheng, Liu, Sun, Li (b0105) 2016; 218
Tan, Lam, Uemura, Lim, Wong, Ramli, Kiew, Lee (b0175) 2018; 164
Cheng, Ngo, Guo, Liu, Zhou, Chang, Nguyen, Bui, Zhang (b0025) 2018; 621
Ratnapuram, H.P., Vutukuru, S.S., Yadavalli, R., 2018. Mixotrophic transition induced lipid productivity in Chlorella pyrenoidosa under stress conditions for biodiesel production. Heliyon. 4, e00496–e00496.
Arif, Bai, Usman, Jalalah, Harraz, Al-Assiri, Li, Salama, Zhang (b0010) 2020; 298
Nagarajan, Kusmayadi, Yen, Dong, Lee, Chang (b0130) 2019
Prandini, Da Silva, Melissa, Pirolli, Michelona, Soaresa (b0140) 2016; 202
Cheng, Ngo, Guo, Chang, Nguyen, Kumar (b0020) 2019; 275
Luo, Lin, Zeng, Luo, Chen, Tian (b0125) 2019; 272
Singh, Singh (b0160) 2015; 50
Ho, Chen, Li, Zhang, Ge, Cao, Ma, Duan, Wang, Ren (b0070) 2019; 159
Wang, Guo, Yen, Ho, Lo, Cheng, Ren, Chang (b0190) 2015; 198
Yamada, Nakatani, Ogino, Kondo (b0210) 2013
Ganeshkumar, Subashchandrabose, Dharmarajan, Venkateswarlu, Naidu, Megharaj (b0055) 2018; 256
Ho, Nakanishi, Ye, Chang, Chen, Hasunuma, Kondo (b0080) 2015
Jiang, Wang, Zhao, Huang, Deng, Wang (b0095) 2018; 268
Chen, Yang, Kuo (b0015) 1992; 21
Franchino, Tigini, Varese, Sartor, Bona (b0050) 2016; 569
Guo, Zhou, Yang, Chen, Xu (b0060) 2018
APHA (b0005) 1995
Taelman, De Meester, Van Dijk, Da Silva, Dewulf (b0170) 2015; 101
Sandefur, Asgharpour, Mariott, Gottberg, Vaden, Matlock, Hestekin (b0155) 2016; 94
Feng, Sugiura, Shimada, Maekawa (b0045) 2003; 103
Togarcheti, Mediboyina, Chauhan, Mukherji, Ravi, Mudliar (b0180) 2017; 122
Luo, He, Yang, Wen, Zeng, Wu, Zhou, Lou (b0120) 2016; 216
Dragone, Fernandes, Abreu, Vicente, Teixeira (b0040) 2011; 88
Liu, Inokuma, Ho, den Haan, van Zyl, Hasunuma, Kondo (b0115) 2017; 114
Li, Yang, Li, Cheng, Zhang, Zhang, Wang (b0100) 2013; 132
Olguin, Doelle, Mercado (b0135) 1995; 15
Zhang, Kendall, Yuan (b0215) 2014; 88
Traviseo, Benitez, Sanchez, Borja, Martin, Colmenarejo (b0185) 2006; 28
Chong, Fadhullah, Lim, Lee (b0035) 2019; 27
Cheng, Xu, Huang, Li, Zhou, Cen (b0030) 2015; 177
Liu, Ho, Sasaki, den Haan, Inokuma, Ogino, van Zyl, Hasunuma, Kondo (b0110) 2016
Stanier, Kunisawa, Mandel, Cohen-Bazire (b0165) 1971; 35
Luo (10.1016/j.biortech.2020.123072_b0125) 2019; 272
Nagarajan (10.1016/j.biortech.2020.123072_b0130) 2019
Zhang (10.1016/j.biortech.2020.123072_b0215) 2014; 88
Ho (10.1016/j.biortech.2020.123072_b0085) 2014; 32
Singh (10.1016/j.biortech.2020.123072_b0160) 2015; 50
Li (10.1016/j.biortech.2020.123072_b0105) 2016; 218
Stanier (10.1016/j.biortech.2020.123072_b0165) 1971; 35
Ho (10.1016/j.biortech.2020.123072_b0075) 2013; 143
Taelman (10.1016/j.biortech.2020.123072_b0170) 2015; 101
Wang (10.1016/j.biortech.2020.123072_b0195) 2017; 242
Wu (10.1016/j.biortech.2020.123072_b0205) 2019; 292
Feng (10.1016/j.biortech.2020.123072_b0045) 2003; 103
Cheng (10.1016/j.biortech.2020.123072_b0025) 2018; 621
Franchino (10.1016/j.biortech.2020.123072_b0050) 2016; 569
Ganeshkumar (10.1016/j.biortech.2020.123072_b0055) 2018; 256
Tan (10.1016/j.biortech.2020.123072_b0175) 2018; 164
Ho (10.1016/j.biortech.2020.123072_b0070) 2019; 159
Huang (10.1016/j.biortech.2020.123072_b0090) 2020; 22
APHA (10.1016/j.biortech.2020.123072_b0005) 1995
Arif (10.1016/j.biortech.2020.123072_b0010) 2020; 298
Qu (10.1016/j.biortech.2020.123072_b0145) 2019
Sandefur (10.1016/j.biortech.2020.123072_b0155) 2016; 94
Chong (10.1016/j.biortech.2020.123072_b0035) 2019; 27
Dragone (10.1016/j.biortech.2020.123072_b0040) 2011; 88
Ho (10.1016/j.biortech.2020.123072_b0065) 2012; 113
10.1016/j.biortech.2020.123072_b0150
Chen (10.1016/j.biortech.2020.123072_b0015) 1992; 21
Guo (10.1016/j.biortech.2020.123072_b0060) 2018
Wang (10.1016/j.biortech.2020.123072_b0200) 2019; 20
Yamada (10.1016/j.biortech.2020.123072_b0210) 2013
Liu (10.1016/j.biortech.2020.123072_b0115) 2017; 114
Olguin (10.1016/j.biortech.2020.123072_b0135) 1995; 15
Luo (10.1016/j.biortech.2020.123072_b0120) 2016; 216
Wang (10.1016/j.biortech.2020.123072_b0190) 2015; 198
Prandini (10.1016/j.biortech.2020.123072_b0140) 2016; 202
Traviseo (10.1016/j.biortech.2020.123072_b0185) 2006; 28
Cheng (10.1016/j.biortech.2020.123072_b0020) 2019; 275
Togarcheti (10.1016/j.biortech.2020.123072_b0180) 2017; 122
Ho (10.1016/j.biortech.2020.123072_b0080) 2015
Jiang (10.1016/j.biortech.2020.123072_b0095) 2018; 268
Liu (10.1016/j.biortech.2020.123072_b0110) 2016
Cheng (10.1016/j.biortech.2020.123072_b0030) 2015; 177
Li (10.1016/j.biortech.2020.123072_b0100) 2013; 132
References_xml – volume: 94
  start-page: 75
  year: 2016
  end-page: 81
  ident: b0155
  article-title: Recovery of nutrients from swine wastewater using ultrafiltration: applications for microalgae cultivation in photobioreactors
  publication-title: Ecol. Eng.
– volume: 164
  start-page: 363
  year: 2018
  end-page: 373
  ident: b0175
  article-title: Semi-continuous cultivation of
  publication-title: Energy Convers. Manage.
– volume: 216
  start-page: 135
  year: 2016
  end-page: 141
  ident: b0120
  article-title: Nutrient removal and lipid production by
  publication-title: Bioresource Technol.
– volume: 218
  start-page: 1163
  year: 2016
  end-page: 1169
  ident: b0105
  article-title: Effect of tetracycline on the growth and nutrient removal capacity of
  publication-title: Bioresource Technol.
– volume: 27
  start-page: 1269
  year: 2019
  end-page: 1288
  ident: b0035
  article-title: Two-stage cultivation of the marine microalga
  publication-title: Aquacult. Int.
– volume: 242
  start-page: 7
  year: 2017
  end-page: 14
  ident: b0195
  article-title: Nutrients and COD removal of swine wastewater with an isolated microalgal strain
  publication-title: Bioresource Technol.
– volume: 21
  start-page: 83
  year: 1992
  end-page: 84
  ident: b0015
  article-title: One-step transformation of yeast in stationary phase
  publication-title: Curr. Genet.
– volume: 621
  start-page: 1664
  year: 2018
  end-page: 1682
  ident: b0025
  article-title: Bioprocessing for elimination antibiotics and hormones from swine wastewater
  publication-title: Sci. Total Environ.
– volume: 272
  start-page: 421
  year: 2019
  end-page: 432
  ident: b0125
  article-title: Performance of a novel photobioreactor for nutrient removal from piggery biogas slurry: operation parameters, microbial diversity and nutrient recovery potential
  publication-title: Bioresource Technol.
– volume: 122
  start-page: 286
  year: 2017
  end-page: 294
  ident: b0180
  article-title: Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source
  publication-title: Resour Conserv. Recy.
– start-page: 8
  year: 2015
  ident: b0080
  article-title: Dynamic metabolic profiling of the marine microalga
  publication-title: Biotechnol. Biofuels
– volume: 292
  year: 2019
  ident: b0205
  article-title: A novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment
  publication-title: Bioresource Technol.
– volume: 113
  start-page: 244
  year: 2012
  end-page: 252
  ident: b0065
  article-title: Effect of light intensity and nitrogen starvation on CO
  publication-title: Bioresource Technol.
– volume: 177
  start-page: 240
  year: 2015
  end-page: 246
  ident: b0030
  article-title: Growth optimisation of microalga mutant at high CO
  publication-title: Bioresource Technol.
– volume: 50
  start-page: 431
  year: 2015
  end-page: 444
  ident: b0160
  article-title: Effect of temperature and light on the growth of algae species: a review
  publication-title: Renew Sust. Energ. Rev.
– volume: 202
  start-page: 67
  year: 2016
  end-page: 75
  ident: b0140
  article-title: Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae
  publication-title: Bioresource Technol.
– volume: 143
  start-page: 163
  year: 2013
  end-page: 171
  ident: b0075
  article-title: Engineering strategies for improving the CO
  publication-title: Bioresource Technol.
– volume: 159
  start-page: 77
  year: 2019
  end-page: 86
  ident: b0070
  article-title: N-doped graphitic biochars from C-phycocyanin extracted
  publication-title: Water Res.
– volume: 103
  start-page: 65
  year: 2003
  end-page: 78
  ident: b0045
  article-title: Development of a high performance electrochemical wastewater treatment system
  publication-title: J. Hazard Mater.
– volume: 114
  start-page: 1201
  year: 2017
  end-page: 1207
  ident: b0115
  article-title: Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic
  publication-title: Biotechnol. Bioeng.
– volume: 32
  start-page: 1448
  year: 2014
  end-page: 1459
  ident: b0085
  article-title: Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review
  publication-title: Biotechnol. Adv.
– volume: 15
  start-page: 85
  year: 1995
  end-page: 94
  ident: b0135
  article-title: Resource recovery through recycling of sugar processing by-products and residuals
  publication-title: Resour. Conserv. Recy.
– start-page: 100
  year: 1995
  end-page: 246
  ident: b0005
  article-title: Standard Methods for the Examination of Water and Wastewater
– volume: 275
  start-page: 109
  year: 2019
  end-page: 122
  ident: b0020
  article-title: Microalgae biomass from swine wastewater and its conversion to bioenergy
  publication-title: Bioresource Technol.
– start-page: 6
  year: 2016
  ident: b0110
  article-title: Engineering of a novel cellulose-adherent cellulolytic
  publication-title: Sci. Rep.
– start-page: 15
  year: 2018
  ident: b0060
  article-title: Effects of hydraulic loading rate on nutrients removal from anaerobically digested swine wastewater by multi soil layering treatment bioreactor
  publication-title: Int J Env Res Pub He.
– start-page: 289
  year: 2019
  ident: b0145
  article-title: Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga
  publication-title: Bioresource Technol.
– start-page: 289
  year: 2019
  ident: b0130
  article-title: Current advances in biological swine wastewater treatment using microalgae-based processes
  publication-title: Bioresource Technol.
– volume: 132
  start-page: 171
  year: 2013
  end-page: 177
  ident: b0100
  article-title: Novel bioconversions of municipal effluent and CO
  publication-title: Bioresource Technol.
– volume: 88
  start-page: 13
  year: 2014
  end-page: 20
  ident: b0215
  article-title: A comparison of on-site nutrient and energy recycling technologies in algal oil production
  publication-title: Resour Conserv Recy.
– volume: 298
  year: 2020
  ident: b0010
  article-title: Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics
  publication-title: Bioresource Technol.
– volume: 268
  start-page: 300
  year: 2018
  end-page: 307
  ident: b0095
  article-title: Establishment of stable microalgal-bacterial consortium in liquid digestate for nutrient removal and biomass accumulation
  publication-title: Bioresource Technol.
– volume: 28
  start-page: 158
  year: 2006
  end-page: 165
  ident: b0185
  article-title: Batch mixed culture of
  publication-title: Ecol. Eng.
– reference: Ratnapuram, H.P., Vutukuru, S.S., Yadavalli, R., 2018. Mixotrophic transition induced lipid productivity in Chlorella pyrenoidosa under stress conditions for biodiesel production. Heliyon. 4, e00496–e00496.
– volume: 198
  start-page: 619
  year: 2015
  end-page: 625
  ident: b0190
  article-title: Cultivation of
  publication-title: Bioresource Technol.
– volume: 20
  start-page: 71
  year: 2019
  end-page: 78
  ident: b0200
  article-title: Vetiver and
  publication-title: J. Adv. Res.
– volume: 256
  start-page: 254
  year: 2018
  end-page: 258
  ident: b0055
  article-title: Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by
  publication-title: Bioresource Technol.
– volume: 35
  start-page: 171
  year: 1971
  end-page: 205
  ident: b0165
  article-title: Purification and properties of unicellular blue-green algae (order Chroococcales)
  publication-title: Bacteriol. Rev.
– volume: 569
  start-page: 40
  year: 2016
  end-page: 45
  ident: b0050
  article-title: Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate
  publication-title: Sci. Total Environ.
– volume: 22
  start-page: 153
  year: 2020
  end-page: 162
  ident: b0090
  article-title: Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: direct high-density ethanol production with competitive life cycle impacts
  publication-title: Green Chem.
– start-page: 3
  year: 2013
  ident: b0210
  article-title: Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing
  publication-title: AMB Express
– volume: 88
  start-page: 3331
  year: 2011
  end-page: 3335
  ident: b0040
  article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae
  publication-title: Appl Energ.
– volume: 101
  start-page: 61
  year: 2015
  end-page: 72
  ident: b0170
  article-title: Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import
  publication-title: Resour. Conserv. Recy.
– volume: 218
  start-page: 1163
  year: 2016
  ident: 10.1016/j.biortech.2020.123072_b0105
  article-title: Effect of tetracycline on the growth and nutrient removal capacity of Chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.07.080
– volume: 94
  start-page: 75
  year: 2016
  ident: 10.1016/j.biortech.2020.123072_b0155
  article-title: Recovery of nutrients from swine wastewater using ultrafiltration: applications for microalgae cultivation in photobioreactors
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2016.05.066
– volume: 569
  start-page: 40
  year: 2016
  ident: 10.1016/j.biortech.2020.123072_b0050
  article-title: Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2016.06.100
– volume: 22
  start-page: 153
  year: 2020
  ident: 10.1016/j.biortech.2020.123072_b0090
  article-title: Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: direct high-density ethanol production with competitive life cycle impacts
  publication-title: Green Chem.
  doi: 10.1039/C9GC02634G
– volume: 101
  start-page: 61
  year: 2015
  ident: 10.1016/j.biortech.2020.123072_b0170
  article-title: Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import
  publication-title: Resour. Conserv. Recy.
  doi: 10.1016/j.resconrec.2015.05.013
– volume: 292
  year: 2019
  ident: 10.1016/j.biortech.2020.123072_b0205
  article-title: A novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2019.121925
– volume: 15
  start-page: 85
  year: 1995
  ident: 10.1016/j.biortech.2020.123072_b0135
  article-title: Resource recovery through recycling of sugar processing by-products and residuals
  publication-title: Resour. Conserv. Recy.
  doi: 10.1016/0921-3449(95)00028-H
– volume: 164
  start-page: 363
  year: 2018
  ident: 10.1016/j.biortech.2020.123072_b0175
  article-title: Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.03.020
– start-page: 289
  year: 2019
  ident: 10.1016/j.biortech.2020.123072_b0145
  article-title: Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga Parachlorella kessleri QWY28
  publication-title: Bioresource Technol.
– volume: 177
  start-page: 240
  year: 2015
  ident: 10.1016/j.biortech.2020.123072_b0030
  article-title: Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2014.11.099
– start-page: 3
  year: 2013
  ident: 10.1016/j.biortech.2020.123072_b0210
  article-title: Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae
  publication-title: AMB Express
– start-page: 8
  year: 2015
  ident: 10.1016/j.biortech.2020.123072_b0080
  article-title: Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity
  publication-title: Biotechnol. Biofuels
– volume: 202
  start-page: 67
  year: 2016
  ident: 10.1016/j.biortech.2020.123072_b0140
  article-title: Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2015.11.082
– start-page: 6
  year: 2016
  ident: 10.1016/j.biortech.2020.123072_b0110
  article-title: Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production
  publication-title: Sci. Rep.
– volume: 242
  start-page: 7
  year: 2017
  ident: 10.1016/j.biortech.2020.123072_b0195
  article-title: Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2017.03.122
– start-page: 100
  year: 1995
  ident: 10.1016/j.biortech.2020.123072_b0005
– volume: 32
  start-page: 1448
  year: 2014
  ident: 10.1016/j.biortech.2020.123072_b0085
  article-title: Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review
  publication-title: Biotechnol. Adv.
  doi: 10.1016/j.biotechadv.2014.09.002
– ident: 10.1016/j.biortech.2020.123072_b0150
  doi: 10.1016/j.heliyon.2017.e00496
– volume: 256
  start-page: 254
  year: 2018
  ident: 10.1016/j.biortech.2020.123072_b0055
  article-title: Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp MM3
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.02.025
– volume: 50
  start-page: 431
  year: 2015
  ident: 10.1016/j.biortech.2020.123072_b0160
  article-title: Effect of temperature and light on the growth of algae species: a review
  publication-title: Renew Sust. Energ. Rev.
  doi: 10.1016/j.rser.2015.05.024
– start-page: 15
  year: 2018
  ident: 10.1016/j.biortech.2020.123072_b0060
  article-title: Effects of hydraulic loading rate on nutrients removal from anaerobically digested swine wastewater by multi soil layering treatment bioreactor
  publication-title: Int J Env Res Pub He.
– volume: 88
  start-page: 13
  year: 2014
  ident: 10.1016/j.biortech.2020.123072_b0215
  article-title: A comparison of on-site nutrient and energy recycling technologies in algal oil production
  publication-title: Resour Conserv Recy.
  doi: 10.1016/j.resconrec.2014.04.011
– start-page: 289
  year: 2019
  ident: 10.1016/j.biortech.2020.123072_b0130
  article-title: Current advances in biological swine wastewater treatment using microalgae-based processes
  publication-title: Bioresource Technol.
– volume: 113
  start-page: 244
  year: 2012
  ident: 10.1016/j.biortech.2020.123072_b0065
  article-title: Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2011.11.133
– volume: 272
  start-page: 421
  year: 2019
  ident: 10.1016/j.biortech.2020.123072_b0125
  article-title: Performance of a novel photobioreactor for nutrient removal from piggery biogas slurry: operation parameters, microbial diversity and nutrient recovery potential
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.10.057
– volume: 103
  start-page: 65
  year: 2003
  ident: 10.1016/j.biortech.2020.123072_b0045
  article-title: Development of a high performance electrochemical wastewater treatment system
  publication-title: J. Hazard Mater.
  doi: 10.1016/S0304-3894(03)00222-X
– volume: 27
  start-page: 1269
  year: 2019
  ident: 10.1016/j.biortech.2020.123072_b0035
  article-title: Two-stage cultivation of the marine microalga Chlorella salina for starch and carbohydrate production
  publication-title: Aquacult. Int.
  doi: 10.1007/s10499-019-00385-3
– volume: 21
  start-page: 83
  year: 1992
  ident: 10.1016/j.biortech.2020.123072_b0015
  article-title: One-step transformation of yeast in stationary phase
  publication-title: Curr. Genet.
  doi: 10.1007/BF00318659
– volume: 20
  start-page: 71
  year: 2019
  ident: 10.1016/j.biortech.2020.123072_b0200
  article-title: Vetiver and Dictyosphaerium sp. co-culture for the removal of nutrients and ecological inactivation of pathogens in swine wastewater
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.05.004
– volume: 132
  start-page: 171
  year: 2013
  ident: 10.1016/j.biortech.2020.123072_b0100
  article-title: Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2012.12.017
– volume: 298
  year: 2020
  ident: 10.1016/j.biortech.2020.123072_b0010
  article-title: Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2019.122299
– volume: 88
  start-page: 3331
  year: 2011
  ident: 10.1016/j.biortech.2020.123072_b0040
  article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae
  publication-title: Appl Energ.
  doi: 10.1016/j.apenergy.2011.03.012
– volume: 143
  start-page: 163
  year: 2013
  ident: 10.1016/j.biortech.2020.123072_b0075
  article-title: Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2013.05.043
– volume: 268
  start-page: 300
  year: 2018
  ident: 10.1016/j.biortech.2020.123072_b0095
  article-title: Establishment of stable microalgal-bacterial consortium in liquid digestate for nutrient removal and biomass accumulation
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.07.142
– volume: 28
  start-page: 158
  year: 2006
  ident: 10.1016/j.biortech.2020.123072_b0185
  article-title: Batch mixed culture of Chorella vulgaris using settled and diluted piggery waste
  publication-title: Ecol. Eng.
  doi: 10.1016/j.ecoleng.2006.06.001
– volume: 159
  start-page: 77
  year: 2019
  ident: 10.1016/j.biortech.2020.123072_b0070
  article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation
  publication-title: Water Res.
  doi: 10.1016/j.watres.2019.05.008
– volume: 216
  start-page: 135
  year: 2016
  ident: 10.1016/j.biortech.2020.123072_b0120
  article-title: Nutrient removal and lipid production by Coelastrella sp in anaerobically and aerobically treated swine wastewater
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2016.05.059
– volume: 621
  start-page: 1664
  year: 2018
  ident: 10.1016/j.biortech.2020.123072_b0025
  article-title: Bioprocessing for elimination antibiotics and hormones from swine wastewater
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.10.059
– volume: 122
  start-page: 286
  year: 2017
  ident: 10.1016/j.biortech.2020.123072_b0180
  article-title: Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source
  publication-title: Resour Conserv. Recy.
  doi: 10.1016/j.resconrec.2017.01.008
– volume: 35
  start-page: 171
  year: 1971
  ident: 10.1016/j.biortech.2020.123072_b0165
  article-title: Purification and properties of unicellular blue-green algae (order Chroococcales)
  publication-title: Bacteriol. Rev.
  doi: 10.1128/MMBR.35.2.171-205.1971
– volume: 114
  start-page: 1201
  year: 2017
  ident: 10.1016/j.biortech.2020.123072_b0115
  article-title: Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.26252
– volume: 198
  start-page: 619
  year: 2015
  ident: 10.1016/j.biortech.2020.123072_b0190
  article-title: Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2015.09.067
– volume: 275
  start-page: 109
  year: 2019
  ident: 10.1016/j.biortech.2020.123072_b0020
  article-title: Microalgae biomass from swine wastewater and its conversion to bioenergy
  publication-title: Bioresource Technol.
  doi: 10.1016/j.biortech.2018.12.019
SSID ssj0003172
ssib000366023
ssib006546541
ssib006546542
ssib029851487
ssib006546540
Score 2.5775392
Snippet [Display omitted] •A biomass concentration of 9.9 g/L was achieved in real swine wastewater.•The highest carbohydrate productivity of 944 mg/L·d was...
This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along...
This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along...
SourceID proquest
pubmed
crossref
nii
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 123072
SubjectTerms Bioethanol
Carbohydrate
Cell-displayed technology
Microalgae
Real swine wastewater
Title Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production
URI https://dx.doi.org/10.1016/j.biortech.2020.123072
https://cir.nii.ac.jp/crid/1872835442858332672
https://www.ncbi.nlm.nih.gov/pubmed/32163881
https://www.proquest.com/docview/2377339923
Volume 305
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHVMqrQCsjcc3uxnbi5LhaUW1BFCGoKCfLr7Sp0iTa7KpaDvwifiQzeWzbQ9UDl0iJ48ixv8x8jmc-E_KBax5pl4ogBrgEwrowAJbvA-FjmXoOsG7Fnr8cx_MT8ek0Ot0isyEXBsMqe9vf2fTWWvdXxn1vjus8H39H8p1E4GIAp2CL0Q4LIRHloz_XYR7gH9uVBLg5wLtvZAlfjEyOEa3togRDoQUAPLvLQT0o8_xuGtq6o8Md8rTnkXTaNfUZ2fLlLnkyPVv0Whp-lzyaDZu5QckN3cHn5O9XMBSX-W84oUAaC9pcQSG90g3-SoOeppv4c-pbjQlM0KS6dNTqhanO1w4VJmjdycW2-0_QKqNA0Ys1vcQYP0wRobNzwNvaVQB13dCmHtFvP39xSVeNdxTYMsVlg8DlTV3oNVyCjvL4K78qNo-uyhfk5PDjj9k86LdtCKyI-TJg3IYaJh6h5bG0EviCZ0B60sh4I_QkS2BO5ic-MpnPtHGJzLix2oEnlVwLa_hLsl1WpX-NCeWWRUZMtDaJSFyYSsuyKNXCZzCddnyPRMNYKdtrmuPWGoUagtcu1DDGCsdYdWO8R8abenWn6nFvjXSAgrqFTwWu5966-4AdaCAew0SixJ2AaR8mvLEYy98PqFIAC-x6Xfpq1SjGpeQoHQxv-qqD26a9nCGVTsI3_9Gyt-QxnnWhb-_I9nKx8vtAspbmoP2KDsjD6dHn-fE_V-gnwQ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF615VB6QFBeLRQWCY5O4t3168ChClQpfSBEK8rJ7MvUlWtbcaLIHPhF3PiDzPgRyqHqAfUSKV6tNdl5Z2e-IeQ1l9yTJhKOD-LiCG1cB6J86wjrB5HlINYN2PPRsT85FR_OvLMV8rvvhcGyys72tza9sdbdk2F3msMyTYefMfgOPXAxIKdgi1lXWXlg6wXkbdXb_XfA5DeM7b0_GU-cbrSAo4XPZw7j2pUQHLua-4GGVJ5bBo458pRVQo6SEPIGO7KeSmwilQmDhCstDVj7gEuhFYf3rpI7AswFjk0Y_PxbVwIOubm6AOocJO9KW_LFQKVYQtvcgjBEdgANY9d5xNU8Ta-Pexv_t3ef3OsCV7rbns0DsmLzTbKx-33agXfYTbI-7qfHwcoVoMOH5NdHsEyX6Q_4QiFKzWi1gEW6kBX-dwespcuCd2obUAvsCKUyN1TLqSrOa4OQFrRs8WmbgRe0SCjkBFlNL7GoEHtS6PgcBLw2BeiWrGhVDuinL195QOeVNRTCc4r3FI5JqzKTNTyCg7J4d1Bky1cX-SNyeivMfEzW8iK3T7GDXTNPiZGUKhShcaNAs8SLpLAJ5O-GbxGv51WsOxB1nOWRxX213EXc8zhGHsctj7fIcLmvbGFEbtwR9aIQ_6MQMfi6G_fugOwAgfjphgFi6gnIM7HDjvm4_qqXqhjEAo9e5raYVzHjQcARqxh-6ZNW3Jb0coaxe-hu_wdlL8n65OToMD7cPz54Ru7iSlt395yszaZzuwMR3ky9aDSKkm-3rcJ_AA2LZEM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+real+swine+wastewater+treatment+efficiency+and+carbohydrate+productivity+of+newly+microalga+Chlamydomonas+sp.+QWY37+used+for+cell-displayed+bioethanol+production&rft.jtitle=Bioresource+technology&rft.au=Qu%2C+Wenying&rft.au=Loke+Show%2C+Pau&rft.au=Hasunuma%2C+Tomohisa&rft.au=Ho%2C+Shih-Hsin&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=305&rft_id=info:doi/10.1016%2Fj.biortech.2020.123072&rft.externalDocID=S0960852420303412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon