Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production
[Display omitted] •A biomass concentration of 9.9 g/L was achieved in real swine wastewater.•The highest carbohydrate productivity of 944 mg/L·d was obtained.•The highest COD (81%), TN (96%) and TP (nearly 100%) removals were achieved.•Semi-continuous operation was performed together with direct bio...
Saved in:
Published in | Bioresource Technology Vol. 305; p. 123072 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Elsevier Ltd
01.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | [Display omitted]
•A biomass concentration of 9.9 g/L was achieved in real swine wastewater.•The highest carbohydrate productivity of 944 mg/L·d was obtained.•The highest COD (81%), TN (96%) and TP (nearly 100%) removals were achieved.•Semi-continuous operation was performed together with direct bioethanol production.
This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater. |
---|---|
AbstractList | This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater. This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater.This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater. [Display omitted] •A biomass concentration of 9.9 g/L was achieved in real swine wastewater.•The highest carbohydrate productivity of 944 mg/L·d was obtained.•The highest COD (81%), TN (96%) and TP (nearly 100%) removals were achieved.•Semi-continuous operation was performed together with direct bioethanol production. This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along with high pollutant removal efficiencies (chemical oxygen demand: 81%, total nitrogen: 96%, total phosphate: nearly 100%) by optimizing culture conditions and using an appropriate operation strategy. Through a cell-displayed technology that utilizes combined engineered system, a maximum microalgal bioethanol yield of 61 g/L was achieved. This is the first report demonstrating the highest microalgal carbohydrate productivity using swine wastewater without any pretreatments associated with direct high-density bioethanol production from the subsequent microalgal biomass. This work may represent a breakthrough in achieving feasible microalgal bioethanol conversion from real swine wastewater. |
ArticleNumber | 123072 |
Author | Loke Show, Pau Hasunuma, Tomohisa Ho, Shih-Hsin Qu, Wenying |
Author_xml | – sequence: 1 givenname: Wenying surname: Qu fullname: Qu, Wenying organization: State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China – sequence: 2 givenname: Pau surname: Loke Show fullname: Loke Show, Pau organization: Department of Chemical Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Selangor Darul Ehsan, Malaysia – sequence: 3 givenname: Tomohisa surname: Hasunuma fullname: Hasunuma, Tomohisa organization: Graduate School of Science, Technology, and Innovation, Kobe University, Kobe 657-8501, Japan – sequence: 4 givenname: Shih-Hsin surname: Ho fullname: Ho, Shih-Hsin email: stephen6949@hit.edu.cnstep, hen6949@msn.com organization: State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China |
BackLink | https://cir.nii.ac.jp/crid/1872835442858332672$$DView record in CiNii https://www.ncbi.nlm.nih.gov/pubmed/32163881$$D View this record in MEDLINE/PubMed |
BookMark | eNqFUs1q3DAYFCWl2aR9haBDD714qx_bsqGHliX9gUAotJSehCx9zmqxpa2kzeI-Ux-ycpztoZdcJBhmvtE3owt05rwDhK4oWVNC67e7dWd9SKC3a0ZYBhkngj1DK9oIXrBW1GdoRdqaFE3FynN0EeOOEMKpYC_QOWe05k1DV-jP7T7Z0f627g4HUAOOR-sAH1VMcFQJAk4ZTiO4hKHvrbbg9ISVM1ir0PntZEKm4X3w5qCTvbdpwr7HDo7DhEerg1fDncKb7aDGyfjROxVx3K_x1x8_ucCHCAb3PmANw1AYG_eDmjKUt4O0Vc4P_0Z79xI979UQ4dXjfYm-f7z-tvlc3Nx--rL5cFPosuapYFxTRcqWal4LLWrKYQ6krTroSkX6pmwrIFB1PfSqM43oeaeV4TUTXJW645fozTI3W_86QExytHF-oHLgD1EyLgTnbct4pl49Ug_dCEbugx1VmOQp4Ux4txByEjEG6KW2Sc3bpKDsICmRc6FyJ0-FyrlQuRSa5fV_8pPDk8LXi9BZmy3nM38N1vCqLFlTNZyz-oH2fqFBzvPeQpDxoWIwNoBO0nj7lNNf2yHNog |
CitedBy_id | crossref_primary_10_1016_j_cej_2020_126345 crossref_primary_10_1016_j_fuel_2024_132017 crossref_primary_10_2174_1381612828666220406125132 crossref_primary_10_1016_j_chemosphere_2020_129330 crossref_primary_10_1016_j_biortech_2023_128605 crossref_primary_10_1016_j_algal_2021_102523 crossref_primary_10_1007_s12155_022_10562_7 crossref_primary_10_1016_j_biortech_2021_125414 crossref_primary_10_1016_j_biortech_2021_126304 crossref_primary_10_1016_j_biortech_2020_124125 crossref_primary_10_1016_j_jwpe_2024_104828 crossref_primary_10_1039_D1SE01740C crossref_primary_10_1016_j_enconman_2021_114330 crossref_primary_10_1016_j_jhazmat_2022_129785 crossref_primary_10_1007_s11101_022_09819_y crossref_primary_10_1016_j_scitotenv_2024_171557 crossref_primary_10_1016_j_cej_2024_149222 crossref_primary_10_3390_horticulturae9030308 crossref_primary_10_1016_j_biortech_2023_129620 crossref_primary_10_1016_j_watres_2022_119486 crossref_primary_10_3390_cells13131137 crossref_primary_10_1016_j_biortech_2023_128730 crossref_primary_10_1016_j_biortech_2024_130613 crossref_primary_10_1016_j_jclepro_2020_124522 crossref_primary_10_1016_j_jhazmat_2021_126625 crossref_primary_10_1016_j_chemosphere_2022_137094 crossref_primary_10_1016_j_biortech_2020_123858 crossref_primary_10_1016_j_rser_2021_111464 crossref_primary_10_1016_j_rser_2023_113245 crossref_primary_10_1039_D3SE00237C crossref_primary_10_1016_j_algal_2023_103177 crossref_primary_10_1016_j_biortech_2022_128119 crossref_primary_10_1016_j_envres_2022_112965 crossref_primary_10_1016_j_jenvman_2020_111534 crossref_primary_10_1186_s13068_023_02409_w crossref_primary_10_1016_j_chemosphere_2021_132863 crossref_primary_10_1016_j_jhazmat_2021_126264 crossref_primary_10_1016_j_jece_2020_104926 crossref_primary_10_1007_s13399_020_01214_x crossref_primary_10_1016_j_clwat_2024_100018 crossref_primary_10_1007_s11356_022_22799_y crossref_primary_10_1016_j_bej_2021_108129 crossref_primary_10_1016_j_biortech_2022_126886 crossref_primary_10_1016_j_heliyon_2021_e07115 crossref_primary_10_1016_j_envpol_2022_119688 crossref_primary_10_1016_j_jclepro_2022_132114 crossref_primary_10_1016_j_jenvman_2022_114612 crossref_primary_10_1371_journal_pone_0249089 crossref_primary_10_1007_s40726_024_00294_x crossref_primary_10_1016_j_biortech_2022_127086 crossref_primary_10_1002_biot_202100603 crossref_primary_10_1007_s11157_021_09587_9 crossref_primary_10_3390_en16010531 crossref_primary_10_1016_j_jhazmat_2020_124762 crossref_primary_10_1111_gcbb_13136 crossref_primary_10_1016_j_biortech_2021_126056 crossref_primary_10_1016_j_jece_2023_109870 crossref_primary_10_1016_j_jenvman_2022_115284 crossref_primary_10_1016_j_chemosphere_2022_133596 crossref_primary_10_1007_s13399_020_01061_w crossref_primary_10_1016_j_matpr_2022_03_551 crossref_primary_10_1016_j_biortech_2020_124496 crossref_primary_10_1016_j_biotechadv_2021_107885 crossref_primary_10_1016_j_chemosphere_2023_139235 crossref_primary_10_1016_j_psep_2022_04_061 crossref_primary_10_1007_s13762_021_03270_w crossref_primary_10_1007_s13399_023_04233_6 crossref_primary_10_1016_j_jclepro_2022_131153 |
Cites_doi | 10.1016/j.biortech.2016.07.080 10.1016/j.ecoleng.2016.05.066 10.1016/j.scitotenv.2016.06.100 10.1039/C9GC02634G 10.1016/j.resconrec.2015.05.013 10.1016/j.biortech.2019.121925 10.1016/0921-3449(95)00028-H 10.1016/j.enconman.2018.03.020 10.1016/j.biortech.2014.11.099 10.1016/j.biortech.2015.11.082 10.1016/j.biortech.2017.03.122 10.1016/j.biotechadv.2014.09.002 10.1016/j.heliyon.2017.e00496 10.1016/j.biortech.2018.02.025 10.1016/j.rser.2015.05.024 10.1016/j.resconrec.2014.04.011 10.1016/j.biortech.2011.11.133 10.1016/j.biortech.2018.10.057 10.1016/S0304-3894(03)00222-X 10.1007/s10499-019-00385-3 10.1007/BF00318659 10.1016/j.jare.2019.05.004 10.1016/j.biortech.2012.12.017 10.1016/j.biortech.2019.122299 10.1016/j.apenergy.2011.03.012 10.1016/j.biortech.2013.05.043 10.1016/j.biortech.2018.07.142 10.1016/j.ecoleng.2006.06.001 10.1016/j.watres.2019.05.008 10.1016/j.biortech.2016.05.059 10.1016/j.scitotenv.2017.10.059 10.1016/j.resconrec.2017.01.008 10.1128/MMBR.35.2.171-205.1971 10.1002/bit.26252 10.1016/j.biortech.2015.09.067 10.1016/j.biortech.2018.12.019 |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd Copyright © 2020 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright © 2020 Elsevier Ltd. All rights reserved. |
DBID | RYH AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.biortech.2020.123072 |
DatabaseName | CiNii Complete CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Chemistry Agriculture |
EISSN | 1873-2976 |
ExternalDocumentID | 32163881 10_1016_j_biortech_2020_123072 S0960852420303412 |
Genre | Journal Article |
GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9JM 9JN AAAJQ AABNK AABVA AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALCJ AALRI AAOAW AAQFI AAQXK AARJD AARKO AATLK AAXUO ABFNM ABFYP ABGRD ABGSF ABJNI ABLST ABMAC ABNUV ABUDA ABXDB ABYKQ ACDAQ ACGFS ACIUM ACRLP ADBBV ADEWK ADEZE ADMUD ADQTV ADUVX AEBSH AEHWI AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGEKW AGHFR AGRDE AGUBO AGYEJ AHEUO AHHHB AHIDL AHPOS AI. AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLECG BLXMC CBWCG CJTIS CS3 DOVZS DU5 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLV HMC HVGLF HZ~ IHE J1W JARJE KCYFY KOM LUGTX LW9 LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SAB SAC SDF SDG SDP SEN SES SEW SPC SPCBC SSA SSG SSI SSJ SSR SSU SSZ T5K VH1 WUQ Y6R ~02 ~G- ~KM AAHBH AATTM AAXKI AAYWO ACVFH ADCNI AEIPS AEUPX AFPUW AGCQF AGRNS AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV RYH SSH AAYXX ABWVN ACRPL ADNMO AEGFY AFJKZ AGQPQ AIGII CITATION EFKBS NPM 7X8 |
ID | FETCH-LOGICAL-c463t-23c1a0491c367c7613e297695beb4a0f8495e0e5bfefabd87f3bcad36273a4cb3 |
IEDL.DBID | .~1 |
ISSN | 0960-8524 1873-2976 |
IngestDate | Fri Jul 11 07:09:23 EDT 2025 Mon Jul 21 06:00:23 EDT 2025 Tue Jul 01 03:18:41 EDT 2025 Thu Apr 24 23:10:16 EDT 2025 Thu Jun 26 21:40:55 EDT 2025 Fri Feb 23 02:48:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Cell-displayed technology Microalgae Carbohydrate Bioethanol Real swine wastewater |
Language | English |
License | Copyright © 2020 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c463t-23c1a0491c367c7613e297695beb4a0f8495e0e5bfefabd87f3bcad36273a4cb3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8382-2362 0000-0002-9884-1080 |
PMID | 32163881 |
PQID | 2377339923 |
PQPubID | 23479 |
ParticipantIDs | proquest_miscellaneous_2377339923 pubmed_primary_32163881 crossref_citationtrail_10_1016_j_biortech_2020_123072 crossref_primary_10_1016_j_biortech_2020_123072 nii_cinii_1872835442858332672 elsevier_sciencedirect_doi_10_1016_j_biortech_2020_123072 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-06-01 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: 2020-06-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Bioresource Technology |
PublicationTitleAlternate | Bioresour Technol |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Wu, Cen, Addy, Zheng, Luo, Liu, Cheng, Zhou, Chen, Ruan (b0205) 2019; 292 Ho, Chen, Chang (b0065) 2012; 113 Qu, Zhang, Zhang, Ho (b0145) 2019 Huang, Bai, Liu, Hasunuma, Kondo, Ho (b0090) 2020; 22 Ho, Kondo, Hasunuma, Chang (b0075) 2013; 143 Wang, Ho, Cheng, Nagarajan, Guo, Lin, Li, Ren, Chang (b0195) 2017; 242 Wang, Ni, Cheng, Xu, Zhao, Zhou (b0200) 2019; 20 Ho, Ye, Hasunuma, Chang, Kondo (b0085) 2014; 32 Li, Zheng, Liu, Sun, Li (b0105) 2016; 218 Tan, Lam, Uemura, Lim, Wong, Ramli, Kiew, Lee (b0175) 2018; 164 Cheng, Ngo, Guo, Liu, Zhou, Chang, Nguyen, Bui, Zhang (b0025) 2018; 621 Ratnapuram, H.P., Vutukuru, S.S., Yadavalli, R., 2018. Mixotrophic transition induced lipid productivity in Chlorella pyrenoidosa under stress conditions for biodiesel production. Heliyon. 4, e00496–e00496. Arif, Bai, Usman, Jalalah, Harraz, Al-Assiri, Li, Salama, Zhang (b0010) 2020; 298 Nagarajan, Kusmayadi, Yen, Dong, Lee, Chang (b0130) 2019 Prandini, Da Silva, Melissa, Pirolli, Michelona, Soaresa (b0140) 2016; 202 Cheng, Ngo, Guo, Chang, Nguyen, Kumar (b0020) 2019; 275 Luo, Lin, Zeng, Luo, Chen, Tian (b0125) 2019; 272 Singh, Singh (b0160) 2015; 50 Ho, Chen, Li, Zhang, Ge, Cao, Ma, Duan, Wang, Ren (b0070) 2019; 159 Wang, Guo, Yen, Ho, Lo, Cheng, Ren, Chang (b0190) 2015; 198 Yamada, Nakatani, Ogino, Kondo (b0210) 2013 Ganeshkumar, Subashchandrabose, Dharmarajan, Venkateswarlu, Naidu, Megharaj (b0055) 2018; 256 Ho, Nakanishi, Ye, Chang, Chen, Hasunuma, Kondo (b0080) 2015 Jiang, Wang, Zhao, Huang, Deng, Wang (b0095) 2018; 268 Chen, Yang, Kuo (b0015) 1992; 21 Franchino, Tigini, Varese, Sartor, Bona (b0050) 2016; 569 Guo, Zhou, Yang, Chen, Xu (b0060) 2018 APHA (b0005) 1995 Taelman, De Meester, Van Dijk, Da Silva, Dewulf (b0170) 2015; 101 Sandefur, Asgharpour, Mariott, Gottberg, Vaden, Matlock, Hestekin (b0155) 2016; 94 Feng, Sugiura, Shimada, Maekawa (b0045) 2003; 103 Togarcheti, Mediboyina, Chauhan, Mukherji, Ravi, Mudliar (b0180) 2017; 122 Luo, He, Yang, Wen, Zeng, Wu, Zhou, Lou (b0120) 2016; 216 Dragone, Fernandes, Abreu, Vicente, Teixeira (b0040) 2011; 88 Liu, Inokuma, Ho, den Haan, van Zyl, Hasunuma, Kondo (b0115) 2017; 114 Li, Yang, Li, Cheng, Zhang, Zhang, Wang (b0100) 2013; 132 Olguin, Doelle, Mercado (b0135) 1995; 15 Zhang, Kendall, Yuan (b0215) 2014; 88 Traviseo, Benitez, Sanchez, Borja, Martin, Colmenarejo (b0185) 2006; 28 Chong, Fadhullah, Lim, Lee (b0035) 2019; 27 Cheng, Xu, Huang, Li, Zhou, Cen (b0030) 2015; 177 Liu, Ho, Sasaki, den Haan, Inokuma, Ogino, van Zyl, Hasunuma, Kondo (b0110) 2016 Stanier, Kunisawa, Mandel, Cohen-Bazire (b0165) 1971; 35 Luo (10.1016/j.biortech.2020.123072_b0125) 2019; 272 Nagarajan (10.1016/j.biortech.2020.123072_b0130) 2019 Zhang (10.1016/j.biortech.2020.123072_b0215) 2014; 88 Ho (10.1016/j.biortech.2020.123072_b0085) 2014; 32 Singh (10.1016/j.biortech.2020.123072_b0160) 2015; 50 Li (10.1016/j.biortech.2020.123072_b0105) 2016; 218 Stanier (10.1016/j.biortech.2020.123072_b0165) 1971; 35 Ho (10.1016/j.biortech.2020.123072_b0075) 2013; 143 Taelman (10.1016/j.biortech.2020.123072_b0170) 2015; 101 Wang (10.1016/j.biortech.2020.123072_b0195) 2017; 242 Wu (10.1016/j.biortech.2020.123072_b0205) 2019; 292 Feng (10.1016/j.biortech.2020.123072_b0045) 2003; 103 Cheng (10.1016/j.biortech.2020.123072_b0025) 2018; 621 Franchino (10.1016/j.biortech.2020.123072_b0050) 2016; 569 Ganeshkumar (10.1016/j.biortech.2020.123072_b0055) 2018; 256 Tan (10.1016/j.biortech.2020.123072_b0175) 2018; 164 Ho (10.1016/j.biortech.2020.123072_b0070) 2019; 159 Huang (10.1016/j.biortech.2020.123072_b0090) 2020; 22 APHA (10.1016/j.biortech.2020.123072_b0005) 1995 Arif (10.1016/j.biortech.2020.123072_b0010) 2020; 298 Qu (10.1016/j.biortech.2020.123072_b0145) 2019 Sandefur (10.1016/j.biortech.2020.123072_b0155) 2016; 94 Chong (10.1016/j.biortech.2020.123072_b0035) 2019; 27 Dragone (10.1016/j.biortech.2020.123072_b0040) 2011; 88 Ho (10.1016/j.biortech.2020.123072_b0065) 2012; 113 10.1016/j.biortech.2020.123072_b0150 Chen (10.1016/j.biortech.2020.123072_b0015) 1992; 21 Guo (10.1016/j.biortech.2020.123072_b0060) 2018 Wang (10.1016/j.biortech.2020.123072_b0200) 2019; 20 Yamada (10.1016/j.biortech.2020.123072_b0210) 2013 Liu (10.1016/j.biortech.2020.123072_b0115) 2017; 114 Olguin (10.1016/j.biortech.2020.123072_b0135) 1995; 15 Luo (10.1016/j.biortech.2020.123072_b0120) 2016; 216 Wang (10.1016/j.biortech.2020.123072_b0190) 2015; 198 Prandini (10.1016/j.biortech.2020.123072_b0140) 2016; 202 Traviseo (10.1016/j.biortech.2020.123072_b0185) 2006; 28 Cheng (10.1016/j.biortech.2020.123072_b0020) 2019; 275 Togarcheti (10.1016/j.biortech.2020.123072_b0180) 2017; 122 Ho (10.1016/j.biortech.2020.123072_b0080) 2015 Jiang (10.1016/j.biortech.2020.123072_b0095) 2018; 268 Liu (10.1016/j.biortech.2020.123072_b0110) 2016 Cheng (10.1016/j.biortech.2020.123072_b0030) 2015; 177 Li (10.1016/j.biortech.2020.123072_b0100) 2013; 132 |
References_xml | – volume: 94 start-page: 75 year: 2016 end-page: 81 ident: b0155 article-title: Recovery of nutrients from swine wastewater using ultrafiltration: applications for microalgae cultivation in photobioreactors publication-title: Ecol. Eng. – volume: 164 start-page: 363 year: 2018 end-page: 373 ident: b0175 article-title: Semi-continuous cultivation of publication-title: Energy Convers. Manage. – volume: 216 start-page: 135 year: 2016 end-page: 141 ident: b0120 article-title: Nutrient removal and lipid production by publication-title: Bioresource Technol. – volume: 218 start-page: 1163 year: 2016 end-page: 1169 ident: b0105 article-title: Effect of tetracycline on the growth and nutrient removal capacity of publication-title: Bioresource Technol. – volume: 27 start-page: 1269 year: 2019 end-page: 1288 ident: b0035 article-title: Two-stage cultivation of the marine microalga publication-title: Aquacult. Int. – volume: 242 start-page: 7 year: 2017 end-page: 14 ident: b0195 article-title: Nutrients and COD removal of swine wastewater with an isolated microalgal strain publication-title: Bioresource Technol. – volume: 21 start-page: 83 year: 1992 end-page: 84 ident: b0015 article-title: One-step transformation of yeast in stationary phase publication-title: Curr. Genet. – volume: 621 start-page: 1664 year: 2018 end-page: 1682 ident: b0025 article-title: Bioprocessing for elimination antibiotics and hormones from swine wastewater publication-title: Sci. Total Environ. – volume: 272 start-page: 421 year: 2019 end-page: 432 ident: b0125 article-title: Performance of a novel photobioreactor for nutrient removal from piggery biogas slurry: operation parameters, microbial diversity and nutrient recovery potential publication-title: Bioresource Technol. – volume: 122 start-page: 286 year: 2017 end-page: 294 ident: b0180 article-title: Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source publication-title: Resour Conserv. Recy. – start-page: 8 year: 2015 ident: b0080 article-title: Dynamic metabolic profiling of the marine microalga publication-title: Biotechnol. Biofuels – volume: 292 year: 2019 ident: b0205 article-title: A novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment publication-title: Bioresource Technol. – volume: 113 start-page: 244 year: 2012 end-page: 252 ident: b0065 article-title: Effect of light intensity and nitrogen starvation on CO publication-title: Bioresource Technol. – volume: 177 start-page: 240 year: 2015 end-page: 246 ident: b0030 article-title: Growth optimisation of microalga mutant at high CO publication-title: Bioresource Technol. – volume: 50 start-page: 431 year: 2015 end-page: 444 ident: b0160 article-title: Effect of temperature and light on the growth of algae species: a review publication-title: Renew Sust. Energ. Rev. – volume: 202 start-page: 67 year: 2016 end-page: 75 ident: b0140 article-title: Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae publication-title: Bioresource Technol. – volume: 143 start-page: 163 year: 2013 end-page: 171 ident: b0075 article-title: Engineering strategies for improving the CO publication-title: Bioresource Technol. – volume: 159 start-page: 77 year: 2019 end-page: 86 ident: b0070 article-title: N-doped graphitic biochars from C-phycocyanin extracted publication-title: Water Res. – volume: 103 start-page: 65 year: 2003 end-page: 78 ident: b0045 article-title: Development of a high performance electrochemical wastewater treatment system publication-title: J. Hazard Mater. – volume: 114 start-page: 1201 year: 2017 end-page: 1207 ident: b0115 article-title: Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic publication-title: Biotechnol. Bioeng. – volume: 32 start-page: 1448 year: 2014 end-page: 1459 ident: b0085 article-title: Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review publication-title: Biotechnol. Adv. – volume: 15 start-page: 85 year: 1995 end-page: 94 ident: b0135 article-title: Resource recovery through recycling of sugar processing by-products and residuals publication-title: Resour. Conserv. Recy. – start-page: 100 year: 1995 end-page: 246 ident: b0005 article-title: Standard Methods for the Examination of Water and Wastewater – volume: 275 start-page: 109 year: 2019 end-page: 122 ident: b0020 article-title: Microalgae biomass from swine wastewater and its conversion to bioenergy publication-title: Bioresource Technol. – start-page: 6 year: 2016 ident: b0110 article-title: Engineering of a novel cellulose-adherent cellulolytic publication-title: Sci. Rep. – start-page: 15 year: 2018 ident: b0060 article-title: Effects of hydraulic loading rate on nutrients removal from anaerobically digested swine wastewater by multi soil layering treatment bioreactor publication-title: Int J Env Res Pub He. – start-page: 289 year: 2019 ident: b0145 article-title: Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga publication-title: Bioresource Technol. – start-page: 289 year: 2019 ident: b0130 article-title: Current advances in biological swine wastewater treatment using microalgae-based processes publication-title: Bioresource Technol. – volume: 132 start-page: 171 year: 2013 end-page: 177 ident: b0100 article-title: Novel bioconversions of municipal effluent and CO publication-title: Bioresource Technol. – volume: 88 start-page: 13 year: 2014 end-page: 20 ident: b0215 article-title: A comparison of on-site nutrient and energy recycling technologies in algal oil production publication-title: Resour Conserv Recy. – volume: 298 year: 2020 ident: b0010 article-title: Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics publication-title: Bioresource Technol. – volume: 268 start-page: 300 year: 2018 end-page: 307 ident: b0095 article-title: Establishment of stable microalgal-bacterial consortium in liquid digestate for nutrient removal and biomass accumulation publication-title: Bioresource Technol. – volume: 28 start-page: 158 year: 2006 end-page: 165 ident: b0185 article-title: Batch mixed culture of publication-title: Ecol. Eng. – reference: Ratnapuram, H.P., Vutukuru, S.S., Yadavalli, R., 2018. Mixotrophic transition induced lipid productivity in Chlorella pyrenoidosa under stress conditions for biodiesel production. Heliyon. 4, e00496–e00496. – volume: 198 start-page: 619 year: 2015 end-page: 625 ident: b0190 article-title: Cultivation of publication-title: Bioresource Technol. – volume: 20 start-page: 71 year: 2019 end-page: 78 ident: b0200 article-title: Vetiver and publication-title: J. Adv. Res. – volume: 256 start-page: 254 year: 2018 end-page: 258 ident: b0055 article-title: Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by publication-title: Bioresource Technol. – volume: 35 start-page: 171 year: 1971 end-page: 205 ident: b0165 article-title: Purification and properties of unicellular blue-green algae (order Chroococcales) publication-title: Bacteriol. Rev. – volume: 569 start-page: 40 year: 2016 end-page: 45 ident: b0050 article-title: Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate publication-title: Sci. Total Environ. – volume: 22 start-page: 153 year: 2020 end-page: 162 ident: b0090 article-title: Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: direct high-density ethanol production with competitive life cycle impacts publication-title: Green Chem. – start-page: 3 year: 2013 ident: b0210 article-title: Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing publication-title: AMB Express – volume: 88 start-page: 3331 year: 2011 end-page: 3335 ident: b0040 article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae publication-title: Appl Energ. – volume: 101 start-page: 61 year: 2015 end-page: 72 ident: b0170 article-title: Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import publication-title: Resour. Conserv. Recy. – volume: 218 start-page: 1163 year: 2016 ident: 10.1016/j.biortech.2020.123072_b0105 article-title: Effect of tetracycline on the growth and nutrient removal capacity of Chlamydomonas reinhardtii in simulated effluent from wastewater treatment plants publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.07.080 – volume: 94 start-page: 75 year: 2016 ident: 10.1016/j.biortech.2020.123072_b0155 article-title: Recovery of nutrients from swine wastewater using ultrafiltration: applications for microalgae cultivation in photobioreactors publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2016.05.066 – volume: 569 start-page: 40 year: 2016 ident: 10.1016/j.biortech.2020.123072_b0050 article-title: Microalgae treatment removes nutrients and reduces ecotoxicity of diluted piggery digestate publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2016.06.100 – volume: 22 start-page: 153 year: 2020 ident: 10.1016/j.biortech.2020.123072_b0090 article-title: Fermentation of pigment-extracted microalgal residue using yeast cell-surface display: direct high-density ethanol production with competitive life cycle impacts publication-title: Green Chem. doi: 10.1039/C9GC02634G – volume: 101 start-page: 61 year: 2015 ident: 10.1016/j.biortech.2020.123072_b0170 article-title: Environmental sustainability analysis of a protein-rich livestock feed ingredient in The Netherlands: Microalgae production versus soybean import publication-title: Resour. Conserv. Recy. doi: 10.1016/j.resconrec.2015.05.013 – volume: 292 year: 2019 ident: 10.1016/j.biortech.2020.123072_b0205 article-title: A novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2019.121925 – volume: 15 start-page: 85 year: 1995 ident: 10.1016/j.biortech.2020.123072_b0135 article-title: Resource recovery through recycling of sugar processing by-products and residuals publication-title: Resour. Conserv. Recy. doi: 10.1016/0921-3449(95)00028-H – volume: 164 start-page: 363 year: 2018 ident: 10.1016/j.biortech.2020.123072_b0175 article-title: Semi-continuous cultivation of Chlorella vulgaris using chicken compost as nutrients source: Growth optimization study and fatty acid composition analysis publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2018.03.020 – start-page: 289 year: 2019 ident: 10.1016/j.biortech.2020.123072_b0145 article-title: Optimizing real swine wastewater treatment with maximum carbohydrate production by a newly isolated indigenous microalga Parachlorella kessleri QWY28 publication-title: Bioresource Technol. – volume: 177 start-page: 240 year: 2015 ident: 10.1016/j.biortech.2020.123072_b0030 article-title: Growth optimisation of microalga mutant at high CO2 concentration to purify undiluted anaerobic digestion effluent of swine manure publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2014.11.099 – start-page: 3 year: 2013 ident: 10.1016/j.biortech.2020.123072_b0210 article-title: Efficient direct ethanol production from cellulose by cellulase- and cellodextrin transporter-co-expressing Saccharomyces cerevisiae publication-title: AMB Express – start-page: 8 year: 2015 ident: 10.1016/j.biortech.2020.123072_b0080 article-title: Dynamic metabolic profiling of the marine microalga Chlamydomonas sp. JSC4 and enhancing its oil production by optimizing light intensity publication-title: Biotechnol. Biofuels – volume: 202 start-page: 67 year: 2016 ident: 10.1016/j.biortech.2020.123072_b0140 article-title: Enhancement of nutrient removal from swine wastewater digestate coupled to biogas purification by microalgae Scenedesmus spp publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2015.11.082 – start-page: 6 year: 2016 ident: 10.1016/j.biortech.2020.123072_b0110 article-title: Engineering of a novel cellulose-adherent cellulolytic Saccharomyces cerevisiae for cellulosic biofuel production publication-title: Sci. Rep. – volume: 242 start-page: 7 year: 2017 ident: 10.1016/j.biortech.2020.123072_b0195 article-title: Nutrients and COD removal of swine wastewater with an isolated microalgal strain Neochloris aquatica CL-M1 accumulating high carbohydrate content used for biobutanol production publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2017.03.122 – start-page: 100 year: 1995 ident: 10.1016/j.biortech.2020.123072_b0005 – volume: 32 start-page: 1448 year: 2014 ident: 10.1016/j.biortech.2020.123072_b0085 article-title: Perspectives on engineering strategies for improving biofuel production from microalgae – a critical review publication-title: Biotechnol. Adv. doi: 10.1016/j.biotechadv.2014.09.002 – ident: 10.1016/j.biortech.2020.123072_b0150 doi: 10.1016/j.heliyon.2017.e00496 – volume: 256 start-page: 254 year: 2018 ident: 10.1016/j.biortech.2020.123072_b0055 article-title: Use of mixed wastewaters from piggery and winery for nutrient removal and lipid production by Chlorella sp MM3 publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.02.025 – volume: 50 start-page: 431 year: 2015 ident: 10.1016/j.biortech.2020.123072_b0160 article-title: Effect of temperature and light on the growth of algae species: a review publication-title: Renew Sust. Energ. Rev. doi: 10.1016/j.rser.2015.05.024 – start-page: 15 year: 2018 ident: 10.1016/j.biortech.2020.123072_b0060 article-title: Effects of hydraulic loading rate on nutrients removal from anaerobically digested swine wastewater by multi soil layering treatment bioreactor publication-title: Int J Env Res Pub He. – volume: 88 start-page: 13 year: 2014 ident: 10.1016/j.biortech.2020.123072_b0215 article-title: A comparison of on-site nutrient and energy recycling technologies in algal oil production publication-title: Resour Conserv Recy. doi: 10.1016/j.resconrec.2014.04.011 – start-page: 289 year: 2019 ident: 10.1016/j.biortech.2020.123072_b0130 article-title: Current advances in biological swine wastewater treatment using microalgae-based processes publication-title: Bioresource Technol. – volume: 113 start-page: 244 year: 2012 ident: 10.1016/j.biortech.2020.123072_b0065 article-title: Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2011.11.133 – volume: 272 start-page: 421 year: 2019 ident: 10.1016/j.biortech.2020.123072_b0125 article-title: Performance of a novel photobioreactor for nutrient removal from piggery biogas slurry: operation parameters, microbial diversity and nutrient recovery potential publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.10.057 – volume: 103 start-page: 65 year: 2003 ident: 10.1016/j.biortech.2020.123072_b0045 article-title: Development of a high performance electrochemical wastewater treatment system publication-title: J. Hazard Mater. doi: 10.1016/S0304-3894(03)00222-X – volume: 27 start-page: 1269 year: 2019 ident: 10.1016/j.biortech.2020.123072_b0035 article-title: Two-stage cultivation of the marine microalga Chlorella salina for starch and carbohydrate production publication-title: Aquacult. Int. doi: 10.1007/s10499-019-00385-3 – volume: 21 start-page: 83 year: 1992 ident: 10.1016/j.biortech.2020.123072_b0015 article-title: One-step transformation of yeast in stationary phase publication-title: Curr. Genet. doi: 10.1007/BF00318659 – volume: 20 start-page: 71 year: 2019 ident: 10.1016/j.biortech.2020.123072_b0200 article-title: Vetiver and Dictyosphaerium sp. co-culture for the removal of nutrients and ecological inactivation of pathogens in swine wastewater publication-title: J. Adv. Res. doi: 10.1016/j.jare.2019.05.004 – volume: 132 start-page: 171 year: 2013 ident: 10.1016/j.biortech.2020.123072_b0100 article-title: Novel bioconversions of municipal effluent and CO2 into protein riched Chlorella vulgaris biomass publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2012.12.017 – volume: 298 year: 2020 ident: 10.1016/j.biortech.2020.123072_b0010 article-title: Highest accumulated microalgal lipids (polar and non-polar) for biodiesel production with advanced wastewater treatment: Role of lipidomics publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2019.122299 – volume: 88 start-page: 3331 year: 2011 ident: 10.1016/j.biortech.2020.123072_b0040 article-title: Nutrient limitation as a strategy for increasing starch accumulation in microalgae publication-title: Appl Energ. doi: 10.1016/j.apenergy.2011.03.012 – volume: 143 start-page: 163 year: 2013 ident: 10.1016/j.biortech.2020.123072_b0075 article-title: Engineering strategies for improving the CO2 fixation and carbohydrate productivity of Scenedesmus obliquus CNW-N used for bioethanol fermentation publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2013.05.043 – volume: 268 start-page: 300 year: 2018 ident: 10.1016/j.biortech.2020.123072_b0095 article-title: Establishment of stable microalgal-bacterial consortium in liquid digestate for nutrient removal and biomass accumulation publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.07.142 – volume: 28 start-page: 158 year: 2006 ident: 10.1016/j.biortech.2020.123072_b0185 article-title: Batch mixed culture of Chorella vulgaris using settled and diluted piggery waste publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2006.06.001 – volume: 159 start-page: 77 year: 2019 ident: 10.1016/j.biortech.2020.123072_b0070 article-title: N-doped graphitic biochars from C-phycocyanin extracted Spirulina residue for catalytic persulfate activation toward nonradical disinfection and organic oxidation publication-title: Water Res. doi: 10.1016/j.watres.2019.05.008 – volume: 216 start-page: 135 year: 2016 ident: 10.1016/j.biortech.2020.123072_b0120 article-title: Nutrient removal and lipid production by Coelastrella sp in anaerobically and aerobically treated swine wastewater publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2016.05.059 – volume: 621 start-page: 1664 year: 2018 ident: 10.1016/j.biortech.2020.123072_b0025 article-title: Bioprocessing for elimination antibiotics and hormones from swine wastewater publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2017.10.059 – volume: 122 start-page: 286 year: 2017 ident: 10.1016/j.biortech.2020.123072_b0180 article-title: Life cycle assessment of microalgae based biodiesel production to evaluate the impact of biomass productivity and energy source publication-title: Resour Conserv. Recy. doi: 10.1016/j.resconrec.2017.01.008 – volume: 35 start-page: 171 year: 1971 ident: 10.1016/j.biortech.2020.123072_b0165 article-title: Purification and properties of unicellular blue-green algae (order Chroococcales) publication-title: Bacteriol. Rev. doi: 10.1128/MMBR.35.2.171-205.1971 – volume: 114 start-page: 1201 year: 2017 ident: 10.1016/j.biortech.2020.123072_b0115 article-title: Improvement of ethanol production from crystalline cellulose via optimizing cellulase ratios in cellulolytic Saccharomyces cerevisiae publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.26252 – volume: 198 start-page: 619 year: 2015 ident: 10.1016/j.biortech.2020.123072_b0190 article-title: Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2015.09.067 – volume: 275 start-page: 109 year: 2019 ident: 10.1016/j.biortech.2020.123072_b0020 article-title: Microalgae biomass from swine wastewater and its conversion to bioenergy publication-title: Bioresource Technol. doi: 10.1016/j.biortech.2018.12.019 |
SSID | ssj0003172 ssib000366023 ssib006546541 ssib006546542 ssib029851487 ssib006546540 |
Score | 2.5775392 |
Snippet | [Display omitted]
•A biomass concentration of 9.9 g/L was achieved in real swine wastewater.•The highest carbohydrate productivity of 944 mg/L·d was... This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along... This work aimed to study an newly isolated microalgal strain, Chlamydomonas sp. QWY37, that can achieve a maximum carbohydrate production of 944 mg/L·d, along... |
SourceID | proquest pubmed crossref nii elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 123072 |
SubjectTerms | Bioethanol Carbohydrate Cell-displayed technology Microalgae Real swine wastewater |
Title | Optimizing real swine wastewater treatment efficiency and carbohydrate productivity of newly microalga Chlamydomonas sp. QWY37 used for cell-displayed bioethanol production |
URI | https://dx.doi.org/10.1016/j.biortech.2020.123072 https://cir.nii.ac.jp/crid/1872835442858332672 https://www.ncbi.nlm.nih.gov/pubmed/32163881 https://www.proquest.com/docview/2377339923 |
Volume | 305 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKOQAHVMqrQCsjcc3uxnbi5LhaUW1BFCGoKCfLr7Sp0iTa7KpaDvwifiQzeWzbQ9UDl0iJ48ixv8x8jmc-E_KBax5pl4ogBrgEwrowAJbvA-FjmXoOsG7Fnr8cx_MT8ek0Ot0isyEXBsMqe9vf2fTWWvdXxn1vjus8H39H8p1E4GIAp2CL0Q4LIRHloz_XYR7gH9uVBLg5wLtvZAlfjEyOEa3togRDoQUAPLvLQT0o8_xuGtq6o8Md8rTnkXTaNfUZ2fLlLnkyPVv0Whp-lzyaDZu5QckN3cHn5O9XMBSX-W84oUAaC9pcQSG90g3-SoOeppv4c-pbjQlM0KS6dNTqhanO1w4VJmjdycW2-0_QKqNA0Ys1vcQYP0wRobNzwNvaVQB13dCmHtFvP39xSVeNdxTYMsVlg8DlTV3oNVyCjvL4K78qNo-uyhfk5PDjj9k86LdtCKyI-TJg3IYaJh6h5bG0EviCZ0B60sh4I_QkS2BO5ic-MpnPtHGJzLix2oEnlVwLa_hLsl1WpX-NCeWWRUZMtDaJSFyYSsuyKNXCZzCddnyPRMNYKdtrmuPWGoUagtcu1DDGCsdYdWO8R8abenWn6nFvjXSAgrqFTwWu5966-4AdaCAew0SixJ2AaR8mvLEYy98PqFIAC-x6Xfpq1SjGpeQoHQxv-qqD26a9nCGVTsI3_9Gyt-QxnnWhb-_I9nKx8vtAspbmoP2KDsjD6dHn-fE_V-gnwQ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF615VB6QFBeLRQWCY5O4t3168ChClQpfSBEK8rJ7MvUlWtbcaLIHPhF3PiDzPgRyqHqAfUSKV6tNdl5Z2e-IeQ1l9yTJhKOD-LiCG1cB6J86wjrB5HlINYN2PPRsT85FR_OvLMV8rvvhcGyys72tza9sdbdk2F3msMyTYefMfgOPXAxIKdgi1lXWXlg6wXkbdXb_XfA5DeM7b0_GU-cbrSAo4XPZw7j2pUQHLua-4GGVJ5bBo458pRVQo6SEPIGO7KeSmwilQmDhCstDVj7gEuhFYf3rpI7AswFjk0Y_PxbVwIOubm6AOocJO9KW_LFQKVYQtvcgjBEdgANY9d5xNU8Ta-Pexv_t3ef3OsCV7rbns0DsmLzTbKx-33agXfYTbI-7qfHwcoVoMOH5NdHsEyX6Q_4QiFKzWi1gEW6kBX-dwespcuCd2obUAvsCKUyN1TLqSrOa4OQFrRs8WmbgRe0SCjkBFlNL7GoEHtS6PgcBLw2BeiWrGhVDuinL195QOeVNRTCc4r3FI5JqzKTNTyCg7J4d1Bky1cX-SNyeivMfEzW8iK3T7GDXTNPiZGUKhShcaNAs8SLpLAJ5O-GbxGv51WsOxB1nOWRxX213EXc8zhGHsctj7fIcLmvbGFEbtwR9aIQ_6MQMfi6G_fugOwAgfjphgFi6gnIM7HDjvm4_qqXqhjEAo9e5raYVzHjQcARqxh-6ZNW3Jb0coaxe-hu_wdlL8n65OToMD7cPz54Ru7iSlt395yszaZzuwMR3ky9aDSKkm-3rcJ_AA2LZEM |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+real+swine+wastewater+treatment+efficiency+and+carbohydrate+productivity+of+newly+microalga+Chlamydomonas+sp.+QWY37+used+for+cell-displayed+bioethanol+production&rft.jtitle=Bioresource+technology&rft.au=Qu%2C+Wenying&rft.au=Loke+Show%2C+Pau&rft.au=Hasunuma%2C+Tomohisa&rft.au=Ho%2C+Shih-Hsin&rft.date=2020-06-01&rft.pub=Elsevier+Ltd&rft.issn=0960-8524&rft.eissn=1873-2976&rft.volume=305&rft_id=info:doi/10.1016%2Fj.biortech.2020.123072&rft.externalDocID=S0960852420303412 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-8524&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-8524&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-8524&client=summon |