Angiotensin II Type I Receptor Agonistic Autoantibody Induces Podocyte Injury via Activation of the TRPC6- Calcium/Calcineurin Pathway in Pre-Eclampsia

Background/Aims: Angiotensin II type I receptor agonistic autoantibody (AT1-AA) is closely related to pre-eclampsia, which is characterized by proteinuria and hypertension. AT1-AA has been shown to enhance the effect of AngII in pre-eclampsia, such as production of endothelin-1, activation of ROS, a...

Full description

Saved in:
Bibliographic Details
Published inKidney & blood pressure research Vol. 43; no. 5; pp. 1666 - 1676
Main Authors Yu, Ying, Zhang, Lihong, Xu, Guang, Wu, Zhenghong, Li, Qian, Gu, Yong, Niu, Jianying
Format Journal Article
LanguageEnglish
Published Basel, Switzerland S. Karger AG 01.01.2018
Karger Publishers
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background/Aims: Angiotensin II type I receptor agonistic autoantibody (AT1-AA) is closely related to pre-eclampsia, which is characterized by proteinuria and hypertension. AT1-AA has been shown to enhance the effect of AngII in pre-eclampsia, such as production of endothelin-1, activation of ROS, and vasoconstriction, which are considered to be associated with hypertension; however, whether or not AT1-AA participates in podocyte damage leading to the generation of proteinuria has not been reported. In this study we investigated the role of pre-eclamptic serum AT1-AA on podocytes and the mechanism underlying the generation of proteinuria. Methods: The levels of AT1-AA isolated from pre-eclamptic sera were determined by an enzyme-linked immunosorbent assay. Human podocytes were cultured in vitro and treated with various concentrations of AT1-AA. Whether or not an ERK1/2 inhibitor and TRPC6 siRNA inhibit the effect of AT1-AA on podocytes was determined. Western blot was used to detect the expression of podocyte-specific proteins (nephrin, synaptopodin, and podocin) and the phosphorylation of ERK1/2 and TRPC6. The arrangement of F-actin was observed by immunofluorescence. A Calcineurin Cellular Activity Assay Kit was used to detect calcineurin activity. Changes in the intracellular Ca 2+ concentration was determined by confocal laser. Results: AT1-AA induced a decrease in podocyte-specific protein expression and calcineurin activity and increased expression of p-ERK1/2 and TRPC6 protein and the intracellular Ca 2+ concentration. Immunofluorescence revealed rearrangement of F-actin. PD98059, an inhibitor of ERK1/2, and TRPC6 siRNA attenuated the decreased expression of podocyte-specific proteins and decreased intracellular Ca 2+ concentration. The expression of TRPC6 was reduced following the addition of ERK1/2 inhibitor. Conclusion: AT1-AA induced podocyte damage in a dose-dependent manner. The underlying mechanism might involve activation of the TRPC6 –calcium/calcineurin pathway. This study provides new details regarding podocyte injury and the mechanism underlying the generation of proteinuria in pre-eclampsia.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:1420-4096
1423-0143
1423-0143
DOI:10.1159/000494744