A new mapping method employing a meiotic rec-mutant of yeast [Saccharomyces cerevisiae]

A rapid new mapping method has been developed for localizing a dominant or recessive mutation to a particular chromosome of yeast. The procedure utilizes the ability of strains homozygous for the spo11-1 mutation to undergo chromosome segregation without appreciable recombination during sporulation....

Full description

Saved in:
Bibliographic Details
Published inGenetics (Austin) Vol. 100; no. 3; pp. 387 - 412
Main Authors Klapholz, Sue, Esposito, Rochelle Easton
Format Journal Article
LanguageEnglish
Published United States Genetics Soc America 01.03.1982
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A rapid new mapping method has been developed for localizing a dominant or recessive mutation to a particular chromosome of yeast. The procedure utilizes the ability of strains homozygous for the spo11-1 mutation to undergo chromosome segregation without appreciable recombination during sporulation. The level of sporulation in spo11-1/spo11-1 diploids is reduced and asci are often immature or abnormal in appearance; spore viability is less than 1%. The first step of the mapping procedure is the construction of a haploid spo11-1 strain carrying a recessive drug-resistance marker and the unmapped mutation(s). This strain is crossed to a set of three spo11-1 mapping tester strains containing, among them, a recessive marker on each chromosome. The resulting spo11-1/spo11-1 diploids are sporulated and plated on drug-containing medium. Viable meiotic products that express the drug-resistance marker due to chromosome haploidization are selectively recovered. These meiotic products are haploid for most, but generally not all, chromosomes. The level of disomy for individual chromosomes averages 19%. Each of the recessive chromosomal markers is expressed in approximately a third of the drug-resistant segregants. Ninety-eight percent of these segregants show no evidence of intergenic recombination. Thus, two markers located on the same chromosome, but on different homologs, are virtually never expressed in the same drug-resistant clone. The utility of this mapping procedure is demonstrated by confirming the chromosomal location of seven known markers, as well as by the assignment of a previously unmapped mutation, spo12-1, to chromosome VIII. In addition, the analysis of the products of spo11-1 meiosis indicates that several markers previously assigned to either chromosome XIV or chromosome XVII are actually on the same chromosome.
Bibliography:F30
F
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0016-6731
1943-2631
1943-2631
DOI:10.1093/genetics/100.3.387