High-Speed Videography Reveals How Honeybees Can Turn a Spatial Concept Learning Task Into a Simple Discrimination Task by Stereotyped Flight Movements and Sequential Inspection of Pattern Elements

Honey bees display remarkable visual learning abilities, providing insights regarding visual information processing in a miniature brain. It was discovered that bees can solve a task that is generally viewed as spatial concept learning in primates, specifically the concept of "above" and &...

Full description

Saved in:
Bibliographic Details
Published inFrontiers in psychology Vol. 9; p. 1347
Main Authors Guiraud, Marie, Roper, Mark, Chittka, Lars
Format Journal Article
LanguageEnglish
Published Switzerland Frontiers Media S.A 03.08.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Honey bees display remarkable visual learning abilities, providing insights regarding visual information processing in a miniature brain. It was discovered that bees can solve a task that is generally viewed as spatial concept learning in primates, specifically the concept of "above" and "below." In these works, two pairs of visual stimuli were shown in the two arms of a Y-maze. Each arm displayed a "referent" shape (e.g., a cross, or a horizontal line) and a second geometric shape that appeared either above or below the referent. Bees learning the "concept of aboveness" had to choose the arm of the Y-maze in which a shape- -occurred above the referent, while those learning the "concept of belowness" had to pick the arm in which there was an arbitrary item beneath the referent. Here, we explore the sequential decision-making process that allows bees to solve this task by analyzing their flight trajectories inside the Y-maze. Over 368 h of high-speed video footage of the bees' choice strategies were analyzed in detail. In our experiments, many bees failed the task, and, with the possible exception of a single forager, bees as a group failed to reach significance in picking the correct arm from the decision chamber of the maze. Of those bees that succeeded in choosing correctly, most required a close-up inspection of the targets. These bees typically employed a close-up scan of only the bottom part of the pattern before taking the decision of landing on a feeder. When rejecting incorrect feeders, they repeatedly scanned the pattern features, but were still, on average, faster at completing the task than the non-leaners. This shows that solving a concept learning task could actually be mediated by turning it into a more manageable discrimination task by some animals, although one individual in this study appeared to have gained the ability (by the end of the training) to solve the task in a manner predicted by concept learning.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
This article was submitted to Comparative Psychology, a section of the journal Frontiers in Psychology
Reviewed by: Aurore Avargues-Weber, UMR5169 Centre de Recherches sur la Cognition Animale (CRCA), France; Tohru Taniuchi, Kanazawa University, Japan
These authors have contributed equally to this work.
Edited by: Thomas Bugnyar, Universität Wien, Austria
ISSN:1664-1078
1664-1078
DOI:10.3389/fpsyg.2018.01347