Image denoising and segmentation model construction based on IWOA-PCNN

The research suggests a method to improve the present pulse coupled neural network (PCNN), which has a complex structure and unsatisfactory performance in image denoising and image segmentation. Then, a multi strategy collaborative improvement whale optimization algorithm (WOA) is proposed, and an i...

Full description

Saved in:
Bibliographic Details
Published inScientific reports Vol. 13; no. 1; pp. 19848 - 14
Main Author Zhang, Xiaojun
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 13.11.2023
Nature Publishing Group
Nature Portfolio
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The research suggests a method to improve the present pulse coupled neural network (PCNN), which has a complex structure and unsatisfactory performance in image denoising and image segmentation. Then, a multi strategy collaborative improvement whale optimization algorithm (WOA) is proposed, and an improved whale optimization algorithm (IWOA) is constructed. IWOA is used to find the optimal parameter values of PCNN to optimize PCNN. By combining the aforementioned components, the IWOA-PCNN model had the best image denoising performance, and the produced images were crisper and preserve more information. IWOA-PCNN processed pictures have an average PSNR of 35.87 and an average MSE of 0.24. The average processing time for photos with noise is typically 24.80 s, which is 7.30 s and 7.76 s faster than the WTGAN and IGA-NLM models, respectively. Additionally, the average NU value measures 0.947, and the average D value exceeds 1000. The aforementioned findings demonstrate that the suggested method can successfully enhance the PCNN, improving its capability for image denoising and image segmentation. This can, in part, encourage the use and advancement of the PCNN.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2045-2322
2045-2322
DOI:10.1038/s41598-023-47089-6