Joint Beamforming and Power Allocation for Multiple Access Channels in Cognitive Radio Networks
A cognitive radio (CR) network refers to a secondary network operating in a frequency band originally licensed/allocated to a primary network consisting of one or multiple primary users (PUs). A fundamental challenge for realizing such a system is to ensure the quality of service (QoS) of the PUs as...
Saved in:
Published in | IEEE journal on selected areas in communications Vol. 26; no. 1; pp. 38 - 51 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
New York
IEEE
01.01.2008
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A cognitive radio (CR) network refers to a secondary network operating in a frequency band originally licensed/allocated to a primary network consisting of one or multiple primary users (PUs). A fundamental challenge for realizing such a system is to ensure the quality of service (QoS) of the PUs as well as to maximize the throughput or ensure the QoS, such as signal-to-interference-plus-noise ratios (SINRs), of the secondary users (SUs). In this paper, we study single-input multiple output multiple access channels (SIMO-MAC) for the CR network. Subject to interference constraints for the PUs as well as peak power constraints for the SUs, two optimization problems involving a joint beamforming and power allocation for the CR network are considered: the sum-rate maximization problem and the SINR balancing problem. For the sum-rate maximization problem, zero-forcing based decision feedback equalizers are used to decouple the SIMO-MAC, and a capped multi-level (CML) water-filling algorithm is proposed to maximize the achievable sum-rate of the SUs for the single PU case. When multiple PUs exist, a recursive decoupled power allocation algorithm is proposed to derive the optimal power allocation solution. For the SINR balancing problem, it is shown that, using linear minimum mean-square-error receivers, each of the interference constraints and peak power constraints can be completely decoupled, and thus the multi-constraint optimization problem can be solved through multiple single-constraint sub-problems. Theoretical analysis for the proposed algorithms is presented, together with numerical simulations which compare the performances of different power allocation schemes. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
ISSN: | 0733-8716 1558-0008 |
DOI: | 10.1109/JSAC.2008.080105 |