Modification of Cotton Fabric with Molecularly Imprinted Polymer-Coated Carbon Dots as a Sensor for 17 α-methyltestosterone

Molecularly imprinted polymers@ethylenediamine-modified carbon dots grafted on cotton fabrics (MIPs@EDA-CDs/CF) and smartphone-based fluorescence image analysis were proposed and used for the first time for the detection of 17 α-methyltestosterone (MT). The EDA-CDs were synthesized and grafted on co...

Full description

Saved in:
Bibliographic Details
Published inMolecules (Basel, Switzerland) Vol. 27; no. 21; p. 7257
Main Authors Lim, Monyratanak, Thanasupsin, Sudtida Pliankarom, Thongkon, Nisakorn
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 26.10.2022
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Molecularly imprinted polymers@ethylenediamine-modified carbon dots grafted on cotton fabrics (MIPs@EDA-CDs/CF) and smartphone-based fluorescence image analysis were proposed and used for the first time for the detection of 17 α-methyltestosterone (MT). The EDA-CDs were synthesized and grafted on cotton fabric before coating with the MIPs. The MIPs were synthesized using the MT as a template molecule, methacrylic acid (MAA) as a functional monomer, ethylene glycol dimethacrylate (EGDMA) as a cross-linker, and azobisisobutyronitrile (AIBN) as an initiator. The MIPs@EDA-CDs/CF were characterized using FTIR, SEM-EDS, and RGB fluorescence imaging. The fluorescence images were also taken using a smartphone and the ImageJ program was used for RGB measurement. The Δ red intensity was linearly proportional to MT concentration in the range of 100 to 1000 μg/L (R = 0.999) with a detection limit of 44.4 μg/L and quantification limit of 134 μg/L. The MIPs@EDA-CDs/CF could be stored at 4 °C for a few weeks and could be reused twice. The proposed method could apply for the specific determination of MT in water and sediment samples along with satisfactory recoveries of 96-104% and an acceptable relative standard deviation of 1-6% at the ppb level.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules27217257