Wrench-feasible workspace generation for cable-driven robots

This paper presents a method for analytically generating the boundaries of the wrench-feasible workspace (WFW) for cable robots. This method uses the available net wrench set, which is the set of all wrenches that a cable robot can apply to its surroundings without violating tension limits in the ca...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on robotics Vol. 22; no. 5; pp. 890 - 902
Main Authors Bosscher, P., Riechel, A.T., Ebert-Uphoff, I.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.10.2006
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper presents a method for analytically generating the boundaries of the wrench-feasible workspace (WFW) for cable robots. This method uses the available net wrench set, which is the set of all wrenches that a cable robot can apply to its surroundings without violating tension limits in the cables. The geometric properties of this set permit calculation of the boundaries of the WFW for planar, spatial, and point-mass cable robots. Complete analytical expressions for the WFW boundaries are detailed for a planar cable robot and a spatial point-mass cable robot. The analytically determined boundaries are verified by comparison with numerical results. Based on this, several workspace properties are shown for point-mass cable robots. Finally, it is shown how this workspace-generation approach can be used to analytically formulate other workspaces
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1552-3098
1941-0468
DOI:10.1109/TRO.2006.878967