Integrated nanozymes: facile preparation and biomedical applications

Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, inte...

Full description

Saved in:
Bibliographic Details
Published inChemical communications (Cambridge, England) Vol. 54; no. 5; pp. 652 - 653
Main Authors Wu, Jiangjiexing, Li, Sirong, Wei, Hui
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 19.06.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts ( e.g. , natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes. Attributed to nanoscale proximity effects, integrated nanozymes with superior activities, specificity, and stability will be a hot topic in the future.
AbstractList Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.
Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts ( e.g. , natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.
Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts ( e.g. , natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes. Attributed to nanoscale proximity effects, integrated nanozymes with superior activities, specificity, and stability will be a hot topic in the future.
Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.
Author Li, Sirong
Wei, Hui
Wu, Jiangjiexing
AuthorAffiliation State Key Laboratory of Coordination Chemistry
Nanjing National Laboratory of Microstructures
State Key Laboratory of Analytical Chemistry for Life Science
Department of Biomedical Engineering
College of Engineering and Applied Sciences
Nanjing University
School of Chemistry and Chemical Engineering
AuthorAffiliation_xml – name: School of Chemistry and Chemical Engineering
– name: Nanjing University
– name: Nanjing National Laboratory of Microstructures
– name: State Key Laboratory of Coordination Chemistry
– name: State Key Laboratory of Analytical Chemistry for Life Science
– name: Department of Biomedical Engineering
– name: College of Engineering and Applied Sciences
Author_xml – sequence: 1
  givenname: Jiangjiexing
  surname: Wu
  fullname: Wu, Jiangjiexing
– sequence: 2
  givenname: Sirong
  surname: Li
  fullname: Li, Sirong
– sequence: 3
  givenname: Hui
  surname: Wei
  fullname: Wei, Hui
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29564455$$D View this record in MEDLINE/PubMed
BookMark eNqFkc1LJDEQxYMofq0X7ystXkRoNx-d6sSbtLoKgpdd2FuTSSrS0pNuk56D_vVmHFdBlrUuVfB-VSHv7ZD1MAQkZJ_RU0aF_mGVtZRxyt0a2WYCqlJW6s_6cpa6rEUlt8hOSg80F5Nqk2xxLaGqpNwmFzdhwvtoJnRFMGF4fppjOiu8sV2PxRhxNFnshlCY4IpZN8zRddb0hRnHPg9LKX0jG970Cffe-i75fXX5q7kub-9-3jTnt6WtgE-lAzUDQ8F7h6gVSltrKYCCQlF7zmqmgQN4a4Uz3knFqxkDtFLY2ivgYpccr-6OcXhcYJraeZcs9r0JOCxSyzmnWksG8DVKWU1lBUJn9OgT-jAsYsgfyZQEJYHr5dsHb9Rilj1ox9jNTXxq_1qZgZMVYOOQUkT_jjDaLnNqG9U0rzldZJh-gm03vZo5RdP1_175vlqJyb6f_og-64f_09vRefECEVun3w
CitedBy_id crossref_primary_10_1002_chem_201902222
crossref_primary_10_1007_s00216_022_04149_6
crossref_primary_10_3390_ijms23031923
crossref_primary_10_3390_catal13010178
crossref_primary_10_1007_s00604_019_3616_1
crossref_primary_10_1002_ejic_201900078
crossref_primary_10_1016_j_ijbiomac_2024_139284
crossref_primary_10_1021_acs_analchem_9b05858
crossref_primary_10_1021_acs_chemrev_8b00672
crossref_primary_10_1002_EXP_20210117
crossref_primary_10_2174_2210681213666230330165806
crossref_primary_10_1002_asia_202101422
crossref_primary_10_1021_acs_analchem_0c01028
crossref_primary_10_1002_anbr_202200110
crossref_primary_10_1039_D3TB00441D
crossref_primary_10_1039_C8NR06907G
crossref_primary_10_1039_C8TB02404A
crossref_primary_10_3390_biom11071015
crossref_primary_10_1016_j_microc_2022_107514
crossref_primary_10_1016_j_scitotenv_2024_170125
crossref_primary_10_1016_j_microc_2022_107755
crossref_primary_10_1021_acsestengg_1c00007
crossref_primary_10_1039_C9RA10262K
crossref_primary_10_1007_s00604_019_3416_7
crossref_primary_10_1016_j_ccr_2024_215771
crossref_primary_10_1002_smll_201906846
crossref_primary_10_1016_j_cclet_2018_12_021
crossref_primary_10_1039_C9CC07408B
crossref_primary_10_3390_nano12040638
crossref_primary_10_1016_j_cej_2024_148784
crossref_primary_10_1039_D1CY00074H
crossref_primary_10_1016_j_colsurfa_2019_03_061
crossref_primary_10_1016_j_ccr_2023_215643
crossref_primary_10_1002_slct_201803709
crossref_primary_10_1016_j_biomaterials_2019_04_007
crossref_primary_10_3390_bios11100382
crossref_primary_10_1016_j_aca_2018_12_035
crossref_primary_10_1016_j_aca_2024_343298
crossref_primary_10_1007_s41664_019_00109_9
crossref_primary_10_1007_s12274_023_5847_z
crossref_primary_10_1021_acs_analchem_3c04514
crossref_primary_10_1016_j_saa_2019_04_061
crossref_primary_10_1002_ange_201916142
crossref_primary_10_1016_j_micromeso_2022_111826
crossref_primary_10_1016_j_cej_2025_160762
crossref_primary_10_1016_j_mattod_2020_12_005
crossref_primary_10_1016_j_aca_2021_338299
crossref_primary_10_1039_D0AN00558D
crossref_primary_10_1039_C8TB02878H
crossref_primary_10_3390_catal9080691
crossref_primary_10_1021_acs_analchem_0c04732
crossref_primary_10_1021_acs_analchem_9b05645
crossref_primary_10_3390_polym14224878
crossref_primary_10_1016_j_ccr_2020_213376
crossref_primary_10_1002_anie_201916142
crossref_primary_10_1016_j_snb_2021_130108
crossref_primary_10_1039_C8CC07800A
crossref_primary_10_1016_j_trac_2019_115668
crossref_primary_10_1002_adma_201805368
crossref_primary_10_1016_j_nanoms_2022_10_002
crossref_primary_10_1021_acs_analchem_8b05303
crossref_primary_10_1016_j_bios_2019_111450
crossref_primary_10_1007_s12274_020_2746_4
crossref_primary_10_1016_j_bios_2019_04_061
crossref_primary_10_1039_C9AN00813F
crossref_primary_10_1002_VIW_20200045
crossref_primary_10_1016_j_coco_2018_12_005
crossref_primary_10_1021_acsanm_3c05677
crossref_primary_10_3390_ijms23126424
crossref_primary_10_1021_acsomega_9b04071
crossref_primary_10_1016_j_ccr_2020_213316
crossref_primary_10_1016_j_cej_2024_157735
crossref_primary_10_1039_C8CS00457A
crossref_primary_10_3390_catal11050638
crossref_primary_10_1016_j_cej_2025_160341
crossref_primary_10_1016_j_jconrel_2019_07_038
crossref_primary_10_1016_j_ejmech_2022_114456
crossref_primary_10_1039_C9RA05547A
crossref_primary_10_1007_s10562_019_02964_8
crossref_primary_10_1002_ppsc_201800277
crossref_primary_10_1007_s00216_023_04844_y
crossref_primary_10_1021_acssuschemeng_9b04462
crossref_primary_10_1016_j_cclet_2021_07_062
crossref_primary_10_1002_ange_202112453
crossref_primary_10_1002_marc_202100274
crossref_primary_10_1002_adfm_202110432
crossref_primary_10_1007_s12274_022_4557_2
crossref_primary_10_1007_s10895_024_03930_3
crossref_primary_10_1007_s00604_019_3382_0
crossref_primary_10_1557_s43578_023_01084_9
crossref_primary_10_1016_j_cclet_2021_06_087
crossref_primary_10_1038_s41929_020_0433_1
crossref_primary_10_1039_D0CY00696C
crossref_primary_10_1039_D3NR04964G
crossref_primary_10_1016_j_cclet_2021_03_078
crossref_primary_10_1039_C9FO01590F
crossref_primary_10_1039_C8TB01853G
crossref_primary_10_1021_acssuschemeng_8b02476
crossref_primary_10_1039_D1TB00370D
crossref_primary_10_1016_j_cej_2021_129431
crossref_primary_10_1016_j_cej_2021_133669
crossref_primary_10_1039_C9NR06596B
crossref_primary_10_1002_smll_201804987
crossref_primary_10_3390_jfb13010023
crossref_primary_10_1166_jbn_2021_3063
crossref_primary_10_1039_C8CP05660A
crossref_primary_10_1166_jbn_2021_3062
crossref_primary_10_1039_D0NJ02550J
crossref_primary_10_1016_j_ab_2023_115313
crossref_primary_10_1039_D0GC04172F
crossref_primary_10_2139_ssrn_4128531
crossref_primary_10_1021_acsabm_3c00253
crossref_primary_10_1002_anie_202112453
crossref_primary_10_1021_acssuschemeng_9b07631
crossref_primary_10_1039_C8CC04279A
crossref_primary_10_1021_acs_iecr_0c04094
crossref_primary_10_1007_s00604_019_3835_5
crossref_primary_10_1016_j_apmt_2024_102279
crossref_primary_10_1002_EXP_20210089
crossref_primary_10_1021_acs_analchem_8b02197
crossref_primary_10_1016_j_trac_2021_116379
Cites_doi 10.1007/s00604-013-1145-x
10.1038/nnano.2012.91
10.1002/anie.200460649
10.1126/science.1188267
10.1038/ncomms6301
10.1016/j.bios.2013.09.020
10.1021/acsami.6b10471
10.1016/j.ijggc.2016.08.017
10.1039/C4SC02714K
10.1039/c3cc40622a
10.1021/jacs.5b12070
10.1021/ar400250z
10.1002/chem.201504704
10.1038/srep01418
10.1039/C5QI00240K
10.1038/ncomms10619
10.1021/jacs.6b07590
10.1002/anie.201404349
10.1016/j.bios.2017.06.039
10.1016/j.bios.2016.11.046
10.1126/science.1148045
10.1073/pnas.1417047112
10.1021/jacs.5b09337
10.1016/j.bios.2012.03.031
10.1002/chem.201101191
10.1021/acssensors.6b00500
10.1002/ana.24220
10.1021/acsnano.6b08232
10.1007/s10008-009-0990-3
10.1039/C6CC08542C
10.1007/978-3-662-53068-9
10.1038/nchem.2284
10.1038/ncomms13982
10.1039/C5NR04994F
10.1039/C5NR08734A
10.1038/s41467-017-02502-3
10.1039/C7SC05476A
10.1021/acs.chemmater.6b04283
10.1021/jacs.5b10346
10.1126/science.1190094
10.1039/c3cs35486e
10.1038/nnano.2007.260
10.1002/chem.201400309
10.1002/anie.201600868
10.1039/c2nr12109c
10.1002/adfm.201100344
10.1021/jp503242e
10.1039/C4CC06684G
10.1002/anie.201710418
10.1002/anie.200502995
10.1002/anie.201609495
10.1021/acsami.6b04038
10.1021/acs.analchem.7b02895
10.1038/s41467-017-00424-8
10.1016/j.bios.2016.09.108
10.1038/ncomms4200
10.1039/C6TB03317B
10.1016/j.jconrel.2016.02.038
10.1016/j.bios.2010.06.069
10.1021/nl302329n
10.1021/acsnano.7b00905
10.1016/j.aca.2011.07.020
10.1038/nnano.2006.91
10.1002/smll.201503919
10.1021/acs.analchem.6b00975
10.1021/jacs.7b00601
10.1002/adma.201700102
10.1016/j.snb.2016.08.169
10.1021/ac702203f
10.1039/c0cc02698k
10.1371/journal.pone.0109288
10.7150/thno.19257
10.1038/nature19059
10.1002/adma.201503893
10.1021/jacs.6b12932
10.1038/nnano.2009.50
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
DOI 10.1039/c8cc01202d
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef

Materials Research Database
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1364-548X
EndPage 653
ExternalDocumentID 29564455
10_1039_C8CC01202D
c8cc01202d
Genre Journal Article
GroupedDBID -JG
0-7
1TJ
705
70J
70~
7~J
AAEMU
ABGFH
ACLDK
ADSRN
AEFDR
AFVBQ
AGSTE
AUDPV
BSQNT
C6K
EE0
EF-
GNO
H~N
IDZ
J3I
R7B
R7C
R7D
RCNCU
RPMJG
RRA
RRC
RSCEA
SKA
SKF
SKH
SLH
VH6
---
-DZ
-~X
0R~
0UZ
186
29B
2WC
3EH
4.4
53G
5GY
6J9
6TJ
71~
9M8
AAHBH
AAIWI
AAJAE
AAMEH
AANOJ
AAWGC
AAXHV
AAXPP
AAYOK
AAYXX
ABASK
ABDVN
ABEMK
ABJNI
ABPDG
ABRYZ
ABXOH
ACBEA
ACGFO
ACGFS
ACHDF
ACIWK
ACNCT
ACRPL
ADMRA
ADNMO
ADXHL
AENEX
AENGV
AESAV
AETIL
AFFNX
AFLYV
AFOGI
AFRDS
AFRZK
AGEGJ
AGKEF
AGQPQ
AGRSR
AHGCF
AHGXI
AI.
AKMSF
ALMA_UNASSIGNED_HOLDINGS
ALSGL
ALUYA
ANBJS
ANLMG
ANUXI
APEMP
AQHUZ
ASKNT
ASPBG
AVWKF
AZFZN
BBWZM
BLAPV
CAG
CITATION
COF
CS3
DU5
EBS
ECGLT
EEHRC
EJD
F5P
FA8
FEDTE
GGIMP
H13
HVGLF
HZ~
IDY
IH2
J3G
J3H
L-8
M4U
MVM
N9A
NDZJH
O9-
OHT
P2P
R56
RAOCF
RCLXC
RIG
RNS
ROL
RRXOS
SJN
TN5
TWZ
UHB
UPT
VH1
WH7
WHG
X7L
XJT
ZCG
ZKB
CGR
CUY
CVF
ECM
EIF
NPM
VQA
7SR
7U5
8BQ
8FD
JG9
L7M
7X8
7S9
L.6
ID FETCH-LOGICAL-c462t-d68b6a06ffdee98e5c79536068e37f217196266fcc3dafd5824b16ec53c7f8623
ISSN 1359-7345
1364-548X
IngestDate Fri Jul 11 03:11:55 EDT 2025
Fri Jul 11 07:30:18 EDT 2025
Mon Jun 30 04:45:25 EDT 2025
Wed Feb 19 02:40:45 EST 2025
Tue Jul 01 01:14:08 EDT 2025
Thu Apr 24 23:08:11 EDT 2025
Mon Jan 28 17:11:15 EST 2019
Wed Jun 05 04:38:22 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c462t-d68b6a06ffdee98e5c79536068e37f217196266fcc3dafd5824b16ec53c7f8623
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0870-7142
PMID 29564455
PQID 2056856292
PQPubID 2047502
PageCount 11
ParticipantIDs crossref_primary_10_1039_C8CC01202D
rsc_primary_c8cc01202d
proquest_miscellaneous_2017054639
proquest_journals_2056856292
pubmed_primary_29564455
proquest_miscellaneous_2220995166
crossref_citationtrail_10_1039_C8CC01202D
ProviderPackageCode RRA
J3I
ACLDK
RRC
7~J
AEFDR
70~
VH6
GNO
RCNCU
SLH
70J
EE0
RSCEA
AFVBQ
C6K
H~N
0-7
IDZ
RPMJG
1TJ
SKA
-JG
AGSTE
AUDPV
EF-
BSQNT
SKF
SKH
ADSRN
ABGFH
705
R7B
R7D
AAEMU
R7C
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20180619
PublicationDateYYYYMMDD 2018-06-19
PublicationDate_xml – month: 6
  year: 2018
  text: 20180619
  day: 19
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical communications (Cambridge, England)
PublicationTitleAlternate Chem Commun (Camb)
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Jiang (C8CC01202D-(cit77)/*[position()=1]) 2016; 231
Samuel (C8CC01202D-(cit22)/*[position()=1]) 2015; 112
Cheng (C8CC01202D-(cit33)/*[position()=1]) 2017; 89
Hou (C8CC01202D-(cit54)/*[position()=1]) 2015; 7
Zhou (C8CC01202D-(cit56)/*[position()=1]) 2017; 98
Liu (C8CC01202D-(cit69)/*[position()=1]) 2011; 703
Liang (C8CC01202D-(cit72)/*[position()=1]) 2016; 8
Ye (C8CC01202D-(cit64)/*[position()=1]) 2017; 5
Wan (C8CC01202D-(cit42)/*[position()=1]) 2014; 50
Huang (C8CC01202D-(cit70)/*[position()=1]) 2017; 29
Kito (C8CC01202D-(cit38)/*[position()=1]) 2013; 3
Huang (C8CC01202D-(cit66)/*[position()=1]) 2016; 55
Zhao (C8CC01202D-(cit74)/*[position()=1]) 2016; 138
Chen (C8CC01202D-(cit39)/*[position()=1]) 2006; 1
Wang (C8CC01202D-(cit24)/*[position()=1]) 2016
Liang (C8CC01202D-(cit46)/*[position()=1]) 2016; 8
Fu (C8CC01202D-(cit11)/*[position()=1]) 2014; 118
Kim (C8CC01202D-(cit58)/*[position()=1]) 2011; 17
Zhang (C8CC01202D-(cit23)/*[position()=1]) 2016; 138
He (C8CC01202D-(cit71)/*[position()=1]) 2013; 49
Huang (C8CC01202D-(cit63)/*[position()=1]) 2016; 22
Jv (C8CC01202D-(cit43)/*[position()=1]) 2010; 46
Wang (C8CC01202D-(cit4)/*[position()=1]) 2016; 3
Behrens (C8CC01202D-(cit19)/*[position()=1]) 2007; 318
Kim (C8CC01202D-(cit30)/*[position()=1]) 2016; 8
Wei (C8CC01202D-(cit2)/*[position()=1]) 2013; 42
Manea (C8CC01202D-(cit25)/*[position()=1]) 2004; 43
Liu (C8CC01202D-(cit67)/*[position()=1]) 2014; 52
Lin (C8CC01202D-(cit3)/*[position()=1]) 2014; 47
Hu (C8CC01202D-(cit55)/*[position()=1]) 2017; 11
Wilner (C8CC01202D-(cit48)/*[position()=1]) 2009; 4
Natalio (C8CC01202D-(cit41)/*[position()=1]) 2012; 7
Li (C8CC01202D-(cit5)/*[position()=1]) 2018; 45
Wei (C8CC01202D-(cit29)/*[position()=1]) 2008; 80
Fan (C8CC01202D-(cit75)/*[position()=1]) 2017; 53
Neri (C8CC01202D-(cit26)/*[position()=1]) 2017; 139
Lin (C8CC01202D-(cit62)/*[position()=1]) 2015; 6
Kotov (C8CC01202D-(cit6)/*[position()=1]) 2010; 330
Ye (C8CC01202D-(cit9)/*[position()=1]) 2017; 11
Qu (C8CC01202D-(cit65)/*[position()=1]) 2014; 20
Wang (C8CC01202D-(cit53)/*[position()=1]) 2017; 56
Liu (C8CC01202D-(cit8)/*[position()=1]) 2016; 12
Yu (C8CC01202D-(cit60)/*[position()=1]) 2010; 14
Yao (C8CC01202D-(cit18)/*[position()=1]) 2018; 9
Yu (C8CC01202D-(cit68)/*[position()=1]) 2010; 26
Sharma (C8CC01202D-(cit31)/*[position()=1]) 2017; 240
Mukai (C8CC01202D-(cit50)/*[position()=1]) 2017; 56
Lin (C8CC01202D-(cit35)/*[position()=1]) 2018
Huo (C8CC01202D-(cit57)/*[position()=1]) 2017; 8
Zhang (C8CC01202D-(cit76)/*[position()=1]) 2017; 139
Fang (C8CC01202D-(cit13)/*[position()=1]) 2018; 9
Snyder (C8CC01202D-(cit27)/*[position()=1]) 2016; 536
Saeed (C8CC01202D-(cit40)/*[position()=1]) 2016; 53
Cai (C8CC01202D-(cit28)/*[position()=1]) 2015; 137
Cheng (C8CC01202D-(cit34)/*[position()=1]) 2016; 1
Fu (C8CC01202D-(cit51)/*[position()=1]) 2010; 328
Vernekar (C8CC01202D-(cit17)/*[position()=1]) 2014; 5
Petkov (C8CC01202D-(cit36)/*[position()=1]) 2012; 12
Dugan (C8CC01202D-(cit20)/*[position()=1]) 2014; 76
Kluenker (C8CC01202D-(cit37)/*[position()=1]) 2017; 29
Shen (C8CC01202D-(cit12)/*[position()=1]) 2015; 137
Cheng (C8CC01202D-(cit52)/*[position()=1]) 2016; 88
Chang (C8CC01202D-(cit73)/*[position()=1]) 2014; 181
Wang (C8CC01202D-(cit44)/*[position()=1]) 2012; 36
Zhao (C8CC01202D-(cit47)/*[position()=1]) 2016; 7
Gao (C8CC01202D-(cit1)/*[position()=1]) 2007; 2
Xue (C8CC01202D-(cit21)/*[position()=1]) 2014; 5
Fan (C8CC01202D-(cit14)/*[position()=1]) 2017; 89
Kim (C8CC01202D-(cit59)/*[position()=1]) 2011; 21
Lee (C8CC01202D-(cit61)/*[position()=1]) 2005; 44
Tonga (C8CC01202D-(cit7)/*[position()=1]) 2015; 7
Zhang (C8CC01202D-(cit16)/*[position()=1]) 2016; 28
Zhang (C8CC01202D-(cit49)/*[position()=1]) 2016; 7
Song (C8CC01202D-(cit10)/*[position()=1]) 2014; 53
Dong (C8CC01202D-(cit45)/*[position()=1]) 2012; 4
Liu (C8CC01202D-(cit15)/*[position()=1]) 2017; 90
Wang (C8CC01202D-(cit32)/*[position()=1]) 2017; 7
Shibuya (C8CC01202D-(cit78)/*[position()=1]) 2014; 9
References_xml – issn: 2016
  publication-title: Nanozymes: Next Wave of Artificial Enzymes
  doi: Wang Guo Hu Wu Wei
– issn: 2018
  publication-title: Nanozymes for Biomedical Sensing Applications: from in vitro Sensing to Living Systems
  doi: Lin Wu Yao Cao Muhammad Wei
– volume: 181
  start-page: 527
  year: 2014
  ident: C8CC01202D-(cit73)/*[position()=1]
  publication-title: Microchim. Acta
  doi: 10.1007/s00604-013-1145-x
– volume-title: Nanozymes for Biomedical Sensing Applications: from in vitro Sensing to Living Systems
  year: 2018
  ident: C8CC01202D-(cit35)/*[position()=1]
– volume: 7
  start-page: 530
  year: 2012
  ident: C8CC01202D-(cit41)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2012.91
– volume: 43
  start-page: 6165
  year: 2004
  ident: C8CC01202D-(cit25)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200460649
– volume: 328
  start-page: 1141
  year: 2010
  ident: C8CC01202D-(cit51)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1188267
– volume: 5
  start-page: 5301
  year: 2014
  ident: C8CC01202D-(cit17)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6301
– volume: 52
  start-page: 391
  year: 2014
  ident: C8CC01202D-(cit67)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2013.09.020
– volume: 8
  start-page: 34317
  year: 2016
  ident: C8CC01202D-(cit30)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b10471
– volume: 53
  start-page: 254
  year: 2016
  ident: C8CC01202D-(cit40)/*[position()=1]
  publication-title: Int. J. Greenhouse Gas Control
  doi: 10.1016/j.ijggc.2016.08.017
– volume: 6
  start-page: 1272
  year: 2015
  ident: C8CC01202D-(cit62)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC02714K
– volume: 49
  start-page: 4643
  year: 2013
  ident: C8CC01202D-(cit71)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c3cc40622a
– volume: 138
  start-page: 5860
  year: 2016
  ident: C8CC01202D-(cit23)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b12070
– volume: 47
  start-page: 1097
  year: 2014
  ident: C8CC01202D-(cit3)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/ar400250z
– volume: 22
  start-page: 5705
  year: 2016
  ident: C8CC01202D-(cit63)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201504704
– volume: 3
  start-page: 1418
  year: 2013
  ident: C8CC01202D-(cit38)/*[position()=1]
  publication-title: Sci. Rep.
  doi: 10.1038/srep01418
– volume: 3
  start-page: 41
  year: 2016
  ident: C8CC01202D-(cit4)/*[position()=1]
  publication-title: Inorg. Chem. Front.
  doi: 10.1039/C5QI00240K
– volume: 7
  start-page: 10619
  year: 2016
  ident: C8CC01202D-(cit47)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10619
– volume: 138
  start-page: 16645
  year: 2016
  ident: C8CC01202D-(cit74)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07590
– volume: 53
  start-page: 12451
  year: 2014
  ident: C8CC01202D-(cit10)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201404349
– volume: 98
  start-page: 83
  year: 2017
  ident: C8CC01202D-(cit56)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2017.06.039
– volume: 90
  start-page: 69
  year: 2017
  ident: C8CC01202D-(cit15)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.11.046
– volume: 318
  start-page: 1645
  year: 2007
  ident: C8CC01202D-(cit19)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1148045
– volume: 112
  start-page: 2343
  year: 2015
  ident: C8CC01202D-(cit22)/*[position()=1]
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1417047112
– volume: 137
  start-page: 13957
  year: 2015
  ident: C8CC01202D-(cit28)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b09337
– volume: 36
  start-page: 18
  year: 2012
  ident: C8CC01202D-(cit44)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2012.03.031
– volume: 17
  start-page: 10700
  year: 2011
  ident: C8CC01202D-(cit58)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201101191
– volume: 1
  start-page: 1336
  year: 2016
  ident: C8CC01202D-(cit34)/*[position()=1]
  publication-title: ACS Sens.
  doi: 10.1021/acssensors.6b00500
– volume: 76
  start-page: 393
  year: 2014
  ident: C8CC01202D-(cit20)/*[position()=1]
  publication-title: Ann. Neurol.
  doi: 10.1002/ana.24220
– volume: 11
  start-page: 2052
  year: 2017
  ident: C8CC01202D-(cit9)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b08232
– volume: 14
  start-page: 1595
  year: 2010
  ident: C8CC01202D-(cit60)/*[position()=1]
  publication-title: J. Solid State Electrochem.
  doi: 10.1007/s10008-009-0990-3
– volume: 53
  start-page: 424
  year: 2017
  ident: C8CC01202D-(cit75)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C6CC08542C
– volume-title: Nanozymes: Next Wave of Artificial Enzymes
  year: 2016
  ident: C8CC01202D-(cit24)/*[position()=1]
  doi: 10.1007/978-3-662-53068-9
– volume: 7
  start-page: 597
  year: 2015
  ident: C8CC01202D-(cit7)/*[position()=1]
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2284
– volume: 7
  start-page: 13982
  year: 2016
  ident: C8CC01202D-(cit49)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13982
– volume: 7
  start-page: 18770
  year: 2015
  ident: C8CC01202D-(cit54)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR04994F
– volume: 8
  start-page: 6071
  year: 2016
  ident: C8CC01202D-(cit46)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/C5NR08734A
– volume: 9
  start-page: 129
  year: 2018
  ident: C8CC01202D-(cit13)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-02502-3
– volume: 9
  start-page: 2927
  year: 2018
  ident: C8CC01202D-(cit18)/*[position()=1]
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC05476A
– volume: 29
  start-page: 1134
  year: 2017
  ident: C8CC01202D-(cit37)/*[position()=1]
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b04283
– volume: 137
  start-page: 15882
  year: 2015
  ident: C8CC01202D-(cit12)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b10346
– volume: 330
  start-page: 188
  year: 2010
  ident: C8CC01202D-(cit6)/*[position()=1]
  publication-title: Science
  doi: 10.1126/science.1190094
– volume: 42
  start-page: 6060
  year: 2013
  ident: C8CC01202D-(cit2)/*[position()=1]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/c3cs35486e
– volume: 2
  start-page: 577
  year: 2007
  ident: C8CC01202D-(cit1)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2007.260
– volume: 20
  start-page: 7501
  year: 2014
  ident: C8CC01202D-(cit65)/*[position()=1]
  publication-title: Chem. – Eur. J.
  doi: 10.1002/chem.201400309
– volume: 55
  start-page: 6646
  year: 2016
  ident: C8CC01202D-(cit66)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201600868
– volume: 4
  start-page: 3969
  year: 2012
  ident: C8CC01202D-(cit45)/*[position()=1]
  publication-title: Nanoscale
  doi: 10.1039/c2nr12109c
– volume: 21
  start-page: 2868
  year: 2011
  ident: C8CC01202D-(cit59)/*[position()=1]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100344
– volume: 118
  start-page: 18116
  year: 2014
  ident: C8CC01202D-(cit11)/*[position()=1]
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp503242e
– volume: 50
  start-page: 13589
  year: 2014
  ident: C8CC01202D-(cit42)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C4CC06684G
– volume: 56
  start-page: 16082
  year: 2017
  ident: C8CC01202D-(cit53)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201710418
– volume: 44
  start-page: 7427
  year: 2005
  ident: C8CC01202D-(cit61)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200502995
– volume: 56
  start-page: 235
  year: 2017
  ident: C8CC01202D-(cit50)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201609495
– volume: 8
  start-page: 15615
  year: 2016
  ident: C8CC01202D-(cit72)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b04038
– volume: 89
  start-page: 11552
  year: 2017
  ident: C8CC01202D-(cit33)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.7b02895
– volume: 8
  start-page: 357
  year: 2017
  ident: C8CC01202D-(cit57)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-017-00424-8
– volume: 45
  start-page: 129
  year: 2018
  ident: C8CC01202D-(cit5)/*[position()=1]
  publication-title: Prog. Biochem. Biophys.
– volume: 89
  start-page: 846
  year: 2017
  ident: C8CC01202D-(cit14)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2016.09.108
– volume: 5
  start-page: 3200
  year: 2014
  ident: C8CC01202D-(cit21)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4200
– volume: 5
  start-page: 1518
  year: 2017
  ident: C8CC01202D-(cit64)/*[position()=1]
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C6TB03317B
– volume: 231
  start-page: 38
  year: 2016
  ident: C8CC01202D-(cit77)/*[position()=1]
  publication-title: J. Controlled Release
  doi: 10.1016/j.jconrel.2016.02.038
– volume: 26
  start-page: 913
  year: 2010
  ident: C8CC01202D-(cit68)/*[position()=1]
  publication-title: Biosens. Bioelectron.
  doi: 10.1016/j.bios.2010.06.069
– volume: 12
  start-page: 4289
  year: 2012
  ident: C8CC01202D-(cit36)/*[position()=1]
  publication-title: Nano Lett.
  doi: 10.1021/nl302329n
– volume: 11
  start-page: 5558
  year: 2017
  ident: C8CC01202D-(cit55)/*[position()=1]
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b00905
– volume: 703
  start-page: 87
  year: 2011
  ident: C8CC01202D-(cit69)/*[position()=1]
  publication-title: Anal. Chim. Acta
  doi: 10.1016/j.aca.2011.07.020
– volume: 1
  start-page: 142
  year: 2006
  ident: C8CC01202D-(cit39)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2006.91
– volume: 12
  start-page: 4127
  year: 2016
  ident: C8CC01202D-(cit8)/*[position()=1]
  publication-title: Small
  doi: 10.1002/smll.201503919
– volume: 88
  start-page: 5489
  year: 2016
  ident: C8CC01202D-(cit52)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b00975
– volume: 139
  start-page: 5412
  year: 2017
  ident: C8CC01202D-(cit76)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b00601
– volume: 29
  start-page: 1700102
  year: 2017
  ident: C8CC01202D-(cit70)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700102
– volume: 240
  start-page: 338
  year: 2017
  ident: C8CC01202D-(cit31)/*[position()=1]
  publication-title: Sens. Actuators, B
  doi: 10.1016/j.snb.2016.08.169
– volume: 80
  start-page: 2250
  year: 2008
  ident: C8CC01202D-(cit29)/*[position()=1]
  publication-title: Anal. Chem.
  doi: 10.1021/ac702203f
– volume: 46
  start-page: 8017
  year: 2010
  ident: C8CC01202D-(cit43)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/c0cc02698k
– volume: 9
  start-page: e109288
  year: 2014
  ident: C8CC01202D-(cit78)/*[position()=1]
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0109288
– volume: 7
  start-page: 2277
  year: 2017
  ident: C8CC01202D-(cit32)/*[position()=1]
  publication-title: Theranostics
  doi: 10.7150/thno.19257
– volume: 536
  start-page: 317
  year: 2016
  ident: C8CC01202D-(cit27)/*[position()=1]
  publication-title: Nature
  doi: 10.1038/nature19059
– volume: 28
  start-page: 1387
  year: 2016
  ident: C8CC01202D-(cit16)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201503893
– volume: 139
  start-page: 1794
  year: 2017
  ident: C8CC01202D-(cit26)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b12932
– volume: 4
  start-page: 249
  year: 2009
  ident: C8CC01202D-(cit48)/*[position()=1]
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2009.50
SSID ssj0000158
Score 2.5868864
Snippet Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme...
SourceID proquest
pubmed
crossref
rsc
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 652
SubjectTerms Animals
biocatalysts
Biomedical materials
Biomimetic Materials - chemistry
Carbon - chemistry
Cascade chemical reactions
chemical compounds
chemical reactions
encapsulation
Enzymes
Enzymes - chemistry
Glucose - analysis
Hydrogels - chemistry
Metal-Organic Frameworks - chemistry
Nanoparticles - chemistry
Peroxidase
Reactive Oxygen Species - metabolism
Silicon Dioxide - chemistry
surface area
therapeutics
Title Integrated nanozymes: facile preparation and biomedical applications
URI https://www.ncbi.nlm.nih.gov/pubmed/29564455
https://www.proquest.com/docview/2056856292
https://www.proquest.com/docview/2017054639
https://www.proquest.com/docview/2220995166
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgPcCl4quQUlAQXBBK2fXHxOFWpUUtAi5sxd6i2LGrIshW7a4E_fWMY8cJ6oKASxTZThT52ePneOYNIS8oclRqnGdrDTzjNYcMl5EmA9NITZXiRrlo5A8f4eiEv5uL-ZDesosuWao9fbU2ruR_UMUyxNVFyf4DsvGlWID3iC9eEWG8_hXGx73WQ_OqrdvF1Y9v3sPN1honu4v_98rewePYh9p7eYDRuXW0y6sOUhwvp1_OzPd-TXPeOt2R_ycXERfLPhuf73p1Nv5xMJXOwSmYJ2_rmCiynHk1xz0TyhAx3MTMxwbSqzyHgSBG1g68-GxYOMGr_l6zyRPmJE211NoF6tJmWHmiP-BQeZNsUiT8aLE29w9nx-9HUmBdrtX40b3ULCteD0__Si6u7RiQP1z0eV06_jC7Q7YC8U_3PYp3yQ3T3iO3yj7f3n1yMKCZRjTfpB7LdIRlilimA5bpGMsH5OTt4aw8ykKOi0xzoMusAamgnoC1jTGFNELn7kB9AtKw3OJ-ES0kciirNWtq2whJuZqC0YLp3OJulG2TjXbRmkckzc2kdnHRhSyAgwWFbF2L3ICaCquBJ-Rl3zmVDgLwLg_J16pzRGBFVcqy7DryICHPY9tzL3uyttVu38dVmBaXFUVKLZFVFzQhz2I19qU7iapbs1i5Nk7FiSM7_kMb6qK6xRQgIQ89fvFTKO7qORciIdsIaCweBkJCdtZXVOeN3fndU4_J7WGi7JKN5cXKPEHOuVRPw3D8CXs_fxY
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+nanozymes%3A+facile+preparation+and+biomedical+applications&rft.au=Wu%2C+Jiangjiexing&rft.au=Li%2C+Sirong&rft.au=Wei%2C+Hui&rft.date=2018-06-19&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=54&rft.issue=5&rft.spage=652&rft.epage=653&rft_id=info:doi/10.1039%2Fc8cc01202d&rft.externalDocID=c8cc01202d
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon