Integrated nanozymes: facile preparation and biomedical applications
Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, inte...
Saved in:
Published in | Chemical communications (Cambridge, England) Vol. 54; no. 5; pp. 652 - 653 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
19.06.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (
e.g.
, natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.
Attributed to nanoscale proximity effects, integrated nanozymes with superior activities, specificity, and stability will be a hot topic in the future. |
---|---|
AbstractList | Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes. Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts ( e.g. , natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes. Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts ( e.g. , natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes. Attributed to nanoscale proximity effects, integrated nanozymes with superior activities, specificity, and stability will be a hot topic in the future. Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes.Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme conditions. However, the moderate activity and limited selectivity of nanozymes have impeded their usage. To overcome these shortcomings, integrated nanozymes (INAzymes) have been developed by encapsulating two or more different biocatalysts (e.g., natural oxidases and peroxidase mimics) together within confined frameworks. On the one hand, with the assistance of natural enzymes, INAzymes are capable of specifically recognizing targets. On the other hand, nanoscale confinement brought about by integration significantly enhances the cascade reaction efficiency. In this Feature Article, we highlight the newly developed INAzymes, covering from synthetic strategies to versatile applications in biodetection and therapeutics. Moreover, it is predicted that INAzymes with superior activities, specificity, and stability will enrich the research of nanozymes and pave new ways in designing multifunctional nanozymes. |
Author | Li, Sirong Wei, Hui Wu, Jiangjiexing |
AuthorAffiliation | State Key Laboratory of Coordination Chemistry Nanjing National Laboratory of Microstructures State Key Laboratory of Analytical Chemistry for Life Science Department of Biomedical Engineering College of Engineering and Applied Sciences Nanjing University School of Chemistry and Chemical Engineering |
AuthorAffiliation_xml | – name: School of Chemistry and Chemical Engineering – name: Nanjing University – name: Nanjing National Laboratory of Microstructures – name: State Key Laboratory of Coordination Chemistry – name: State Key Laboratory of Analytical Chemistry for Life Science – name: Department of Biomedical Engineering – name: College of Engineering and Applied Sciences |
Author_xml | – sequence: 1 givenname: Jiangjiexing surname: Wu fullname: Wu, Jiangjiexing – sequence: 2 givenname: Sirong surname: Li fullname: Li, Sirong – sequence: 3 givenname: Hui surname: Wei fullname: Wei, Hui |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29564455$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc1LJDEQxYMofq0X7ystXkRoNx-d6sSbtLoKgpdd2FuTSSrS0pNuk56D_vVmHFdBlrUuVfB-VSHv7ZD1MAQkZJ_RU0aF_mGVtZRxyt0a2WYCqlJW6s_6cpa6rEUlt8hOSg80F5Nqk2xxLaGqpNwmFzdhwvtoJnRFMGF4fppjOiu8sV2PxRhxNFnshlCY4IpZN8zRddb0hRnHPg9LKX0jG970Cffe-i75fXX5q7kub-9-3jTnt6WtgE-lAzUDQ8F7h6gVSltrKYCCQlF7zmqmgQN4a4Uz3knFqxkDtFLY2ivgYpccr-6OcXhcYJraeZcs9r0JOCxSyzmnWksG8DVKWU1lBUJn9OgT-jAsYsgfyZQEJYHr5dsHb9Rilj1ox9jNTXxq_1qZgZMVYOOQUkT_jjDaLnNqG9U0rzldZJh-gm03vZo5RdP1_175vlqJyb6f_og-64f_09vRefECEVun3w |
CitedBy_id | crossref_primary_10_1002_chem_201902222 crossref_primary_10_1007_s00216_022_04149_6 crossref_primary_10_3390_ijms23031923 crossref_primary_10_3390_catal13010178 crossref_primary_10_1007_s00604_019_3616_1 crossref_primary_10_1002_ejic_201900078 crossref_primary_10_1016_j_ijbiomac_2024_139284 crossref_primary_10_1021_acs_analchem_9b05858 crossref_primary_10_1021_acs_chemrev_8b00672 crossref_primary_10_1002_EXP_20210117 crossref_primary_10_2174_2210681213666230330165806 crossref_primary_10_1002_asia_202101422 crossref_primary_10_1021_acs_analchem_0c01028 crossref_primary_10_1002_anbr_202200110 crossref_primary_10_1039_D3TB00441D crossref_primary_10_1039_C8NR06907G crossref_primary_10_1039_C8TB02404A crossref_primary_10_3390_biom11071015 crossref_primary_10_1016_j_microc_2022_107514 crossref_primary_10_1016_j_scitotenv_2024_170125 crossref_primary_10_1016_j_microc_2022_107755 crossref_primary_10_1021_acsestengg_1c00007 crossref_primary_10_1039_C9RA10262K crossref_primary_10_1007_s00604_019_3416_7 crossref_primary_10_1016_j_ccr_2024_215771 crossref_primary_10_1002_smll_201906846 crossref_primary_10_1016_j_cclet_2018_12_021 crossref_primary_10_1039_C9CC07408B crossref_primary_10_3390_nano12040638 crossref_primary_10_1016_j_cej_2024_148784 crossref_primary_10_1039_D1CY00074H crossref_primary_10_1016_j_colsurfa_2019_03_061 crossref_primary_10_1016_j_ccr_2023_215643 crossref_primary_10_1002_slct_201803709 crossref_primary_10_1016_j_biomaterials_2019_04_007 crossref_primary_10_3390_bios11100382 crossref_primary_10_1016_j_aca_2018_12_035 crossref_primary_10_1016_j_aca_2024_343298 crossref_primary_10_1007_s41664_019_00109_9 crossref_primary_10_1007_s12274_023_5847_z crossref_primary_10_1021_acs_analchem_3c04514 crossref_primary_10_1016_j_saa_2019_04_061 crossref_primary_10_1002_ange_201916142 crossref_primary_10_1016_j_micromeso_2022_111826 crossref_primary_10_1016_j_cej_2025_160762 crossref_primary_10_1016_j_mattod_2020_12_005 crossref_primary_10_1016_j_aca_2021_338299 crossref_primary_10_1039_D0AN00558D crossref_primary_10_1039_C8TB02878H crossref_primary_10_3390_catal9080691 crossref_primary_10_1021_acs_analchem_0c04732 crossref_primary_10_1021_acs_analchem_9b05645 crossref_primary_10_3390_polym14224878 crossref_primary_10_1016_j_ccr_2020_213376 crossref_primary_10_1002_anie_201916142 crossref_primary_10_1016_j_snb_2021_130108 crossref_primary_10_1039_C8CC07800A crossref_primary_10_1016_j_trac_2019_115668 crossref_primary_10_1002_adma_201805368 crossref_primary_10_1016_j_nanoms_2022_10_002 crossref_primary_10_1021_acs_analchem_8b05303 crossref_primary_10_1016_j_bios_2019_111450 crossref_primary_10_1007_s12274_020_2746_4 crossref_primary_10_1016_j_bios_2019_04_061 crossref_primary_10_1039_C9AN00813F crossref_primary_10_1002_VIW_20200045 crossref_primary_10_1016_j_coco_2018_12_005 crossref_primary_10_1021_acsanm_3c05677 crossref_primary_10_3390_ijms23126424 crossref_primary_10_1021_acsomega_9b04071 crossref_primary_10_1016_j_ccr_2020_213316 crossref_primary_10_1016_j_cej_2024_157735 crossref_primary_10_1039_C8CS00457A crossref_primary_10_3390_catal11050638 crossref_primary_10_1016_j_cej_2025_160341 crossref_primary_10_1016_j_jconrel_2019_07_038 crossref_primary_10_1016_j_ejmech_2022_114456 crossref_primary_10_1039_C9RA05547A crossref_primary_10_1007_s10562_019_02964_8 crossref_primary_10_1002_ppsc_201800277 crossref_primary_10_1007_s00216_023_04844_y crossref_primary_10_1021_acssuschemeng_9b04462 crossref_primary_10_1016_j_cclet_2021_07_062 crossref_primary_10_1002_ange_202112453 crossref_primary_10_1002_marc_202100274 crossref_primary_10_1002_adfm_202110432 crossref_primary_10_1007_s12274_022_4557_2 crossref_primary_10_1007_s10895_024_03930_3 crossref_primary_10_1007_s00604_019_3382_0 crossref_primary_10_1557_s43578_023_01084_9 crossref_primary_10_1016_j_cclet_2021_06_087 crossref_primary_10_1038_s41929_020_0433_1 crossref_primary_10_1039_D0CY00696C crossref_primary_10_1039_D3NR04964G crossref_primary_10_1016_j_cclet_2021_03_078 crossref_primary_10_1039_C9FO01590F crossref_primary_10_1039_C8TB01853G crossref_primary_10_1021_acssuschemeng_8b02476 crossref_primary_10_1039_D1TB00370D crossref_primary_10_1016_j_cej_2021_129431 crossref_primary_10_1016_j_cej_2021_133669 crossref_primary_10_1039_C9NR06596B crossref_primary_10_1002_smll_201804987 crossref_primary_10_3390_jfb13010023 crossref_primary_10_1166_jbn_2021_3063 crossref_primary_10_1039_C8CP05660A crossref_primary_10_1166_jbn_2021_3062 crossref_primary_10_1039_D0NJ02550J crossref_primary_10_1016_j_ab_2023_115313 crossref_primary_10_1039_D0GC04172F crossref_primary_10_2139_ssrn_4128531 crossref_primary_10_1021_acsabm_3c00253 crossref_primary_10_1002_anie_202112453 crossref_primary_10_1021_acssuschemeng_9b07631 crossref_primary_10_1039_C8CC04279A crossref_primary_10_1021_acs_iecr_0c04094 crossref_primary_10_1007_s00604_019_3835_5 crossref_primary_10_1016_j_apmt_2024_102279 crossref_primary_10_1002_EXP_20210089 crossref_primary_10_1021_acs_analchem_8b02197 crossref_primary_10_1016_j_trac_2021_116379 |
Cites_doi | 10.1007/s00604-013-1145-x 10.1038/nnano.2012.91 10.1002/anie.200460649 10.1126/science.1188267 10.1038/ncomms6301 10.1016/j.bios.2013.09.020 10.1021/acsami.6b10471 10.1016/j.ijggc.2016.08.017 10.1039/C4SC02714K 10.1039/c3cc40622a 10.1021/jacs.5b12070 10.1021/ar400250z 10.1002/chem.201504704 10.1038/srep01418 10.1039/C5QI00240K 10.1038/ncomms10619 10.1021/jacs.6b07590 10.1002/anie.201404349 10.1016/j.bios.2017.06.039 10.1016/j.bios.2016.11.046 10.1126/science.1148045 10.1073/pnas.1417047112 10.1021/jacs.5b09337 10.1016/j.bios.2012.03.031 10.1002/chem.201101191 10.1021/acssensors.6b00500 10.1002/ana.24220 10.1021/acsnano.6b08232 10.1007/s10008-009-0990-3 10.1039/C6CC08542C 10.1007/978-3-662-53068-9 10.1038/nchem.2284 10.1038/ncomms13982 10.1039/C5NR04994F 10.1039/C5NR08734A 10.1038/s41467-017-02502-3 10.1039/C7SC05476A 10.1021/acs.chemmater.6b04283 10.1021/jacs.5b10346 10.1126/science.1190094 10.1039/c3cs35486e 10.1038/nnano.2007.260 10.1002/chem.201400309 10.1002/anie.201600868 10.1039/c2nr12109c 10.1002/adfm.201100344 10.1021/jp503242e 10.1039/C4CC06684G 10.1002/anie.201710418 10.1002/anie.200502995 10.1002/anie.201609495 10.1021/acsami.6b04038 10.1021/acs.analchem.7b02895 10.1038/s41467-017-00424-8 10.1016/j.bios.2016.09.108 10.1038/ncomms4200 10.1039/C6TB03317B 10.1016/j.jconrel.2016.02.038 10.1016/j.bios.2010.06.069 10.1021/nl302329n 10.1021/acsnano.7b00905 10.1016/j.aca.2011.07.020 10.1038/nnano.2006.91 10.1002/smll.201503919 10.1021/acs.analchem.6b00975 10.1021/jacs.7b00601 10.1002/adma.201700102 10.1016/j.snb.2016.08.169 10.1021/ac702203f 10.1039/c0cc02698k 10.1371/journal.pone.0109288 10.7150/thno.19257 10.1038/nature19059 10.1002/adma.201503893 10.1021/jacs.6b12932 10.1038/nnano.2009.50 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
DOI | 10.1039/c8cc01202d |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | AGRICOLA CrossRef Materials Research Database MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1364-548X |
EndPage | 653 |
ExternalDocumentID | 29564455 10_1039_C8CC01202D c8cc01202d |
Genre | Journal Article |
GroupedDBID | -JG 0-7 1TJ 705 70J 70~ 7~J AAEMU ABGFH ACLDK ADSRN AEFDR AFVBQ AGSTE AUDPV BSQNT C6K EE0 EF- GNO H~N IDZ J3I R7B R7C R7D RCNCU RPMJG RRA RRC RSCEA SKA SKF SKH SLH VH6 --- -DZ -~X 0R~ 0UZ 186 29B 2WC 3EH 4.4 53G 5GY 6J9 6TJ 71~ 9M8 AAHBH AAIWI AAJAE AAMEH AANOJ AAWGC AAXHV AAXPP AAYOK AAYXX ABASK ABDVN ABEMK ABJNI ABPDG ABRYZ ABXOH ACBEA ACGFO ACGFS ACHDF ACIWK ACNCT ACRPL ADMRA ADNMO ADXHL AENEX AENGV AESAV AETIL AFFNX AFLYV AFOGI AFRDS AFRZK AGEGJ AGKEF AGQPQ AGRSR AHGCF AHGXI AI. AKMSF ALMA_UNASSIGNED_HOLDINGS ALSGL ALUYA ANBJS ANLMG ANUXI APEMP AQHUZ ASKNT ASPBG AVWKF AZFZN BBWZM BLAPV CAG CITATION COF CS3 DU5 EBS ECGLT EEHRC EJD F5P FA8 FEDTE GGIMP H13 HVGLF HZ~ IDY IH2 J3G J3H L-8 M4U MVM N9A NDZJH O9- OHT P2P R56 RAOCF RCLXC RIG RNS ROL RRXOS SJN TN5 TWZ UHB UPT VH1 WH7 WHG X7L XJT ZCG ZKB CGR CUY CVF ECM EIF NPM VQA 7SR 7U5 8BQ 8FD JG9 L7M 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c462t-d68b6a06ffdee98e5c79536068e37f217196266fcc3dafd5824b16ec53c7f8623 |
ISSN | 1359-7345 1364-548X |
IngestDate | Fri Jul 11 03:11:55 EDT 2025 Fri Jul 11 07:30:18 EDT 2025 Mon Jun 30 04:45:25 EDT 2025 Wed Feb 19 02:40:45 EST 2025 Tue Jul 01 01:14:08 EDT 2025 Thu Apr 24 23:08:11 EDT 2025 Mon Jan 28 17:11:15 EST 2019 Wed Jun 05 04:38:22 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c462t-d68b6a06ffdee98e5c79536068e37f217196266fcc3dafd5824b16ec53c7f8623 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-0870-7142 |
PMID | 29564455 |
PQID | 2056856292 |
PQPubID | 2047502 |
PageCount | 11 |
ParticipantIDs | crossref_primary_10_1039_C8CC01202D rsc_primary_c8cc01202d proquest_miscellaneous_2017054639 proquest_journals_2056856292 pubmed_primary_29564455 proquest_miscellaneous_2220995166 crossref_citationtrail_10_1039_C8CC01202D |
ProviderPackageCode | RRA J3I ACLDK RRC 7~J AEFDR 70~ VH6 GNO RCNCU SLH 70J EE0 RSCEA AFVBQ C6K H~N 0-7 IDZ RPMJG 1TJ SKA -JG AGSTE AUDPV EF- BSQNT SKF SKH ADSRN ABGFH 705 R7B R7D AAEMU R7C CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20180619 |
PublicationDateYYYYMMDD | 2018-06-19 |
PublicationDate_xml | – month: 6 year: 2018 text: 20180619 day: 19 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical communications (Cambridge, England) |
PublicationTitleAlternate | Chem Commun (Camb) |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Jiang (C8CC01202D-(cit77)/*[position()=1]) 2016; 231 Samuel (C8CC01202D-(cit22)/*[position()=1]) 2015; 112 Cheng (C8CC01202D-(cit33)/*[position()=1]) 2017; 89 Hou (C8CC01202D-(cit54)/*[position()=1]) 2015; 7 Zhou (C8CC01202D-(cit56)/*[position()=1]) 2017; 98 Liu (C8CC01202D-(cit69)/*[position()=1]) 2011; 703 Liang (C8CC01202D-(cit72)/*[position()=1]) 2016; 8 Ye (C8CC01202D-(cit64)/*[position()=1]) 2017; 5 Wan (C8CC01202D-(cit42)/*[position()=1]) 2014; 50 Huang (C8CC01202D-(cit70)/*[position()=1]) 2017; 29 Kito (C8CC01202D-(cit38)/*[position()=1]) 2013; 3 Huang (C8CC01202D-(cit66)/*[position()=1]) 2016; 55 Zhao (C8CC01202D-(cit74)/*[position()=1]) 2016; 138 Chen (C8CC01202D-(cit39)/*[position()=1]) 2006; 1 Wang (C8CC01202D-(cit24)/*[position()=1]) 2016 Liang (C8CC01202D-(cit46)/*[position()=1]) 2016; 8 Fu (C8CC01202D-(cit11)/*[position()=1]) 2014; 118 Kim (C8CC01202D-(cit58)/*[position()=1]) 2011; 17 Zhang (C8CC01202D-(cit23)/*[position()=1]) 2016; 138 He (C8CC01202D-(cit71)/*[position()=1]) 2013; 49 Huang (C8CC01202D-(cit63)/*[position()=1]) 2016; 22 Jv (C8CC01202D-(cit43)/*[position()=1]) 2010; 46 Wang (C8CC01202D-(cit4)/*[position()=1]) 2016; 3 Behrens (C8CC01202D-(cit19)/*[position()=1]) 2007; 318 Kim (C8CC01202D-(cit30)/*[position()=1]) 2016; 8 Wei (C8CC01202D-(cit2)/*[position()=1]) 2013; 42 Manea (C8CC01202D-(cit25)/*[position()=1]) 2004; 43 Liu (C8CC01202D-(cit67)/*[position()=1]) 2014; 52 Lin (C8CC01202D-(cit3)/*[position()=1]) 2014; 47 Hu (C8CC01202D-(cit55)/*[position()=1]) 2017; 11 Wilner (C8CC01202D-(cit48)/*[position()=1]) 2009; 4 Natalio (C8CC01202D-(cit41)/*[position()=1]) 2012; 7 Li (C8CC01202D-(cit5)/*[position()=1]) 2018; 45 Wei (C8CC01202D-(cit29)/*[position()=1]) 2008; 80 Fan (C8CC01202D-(cit75)/*[position()=1]) 2017; 53 Neri (C8CC01202D-(cit26)/*[position()=1]) 2017; 139 Lin (C8CC01202D-(cit62)/*[position()=1]) 2015; 6 Kotov (C8CC01202D-(cit6)/*[position()=1]) 2010; 330 Ye (C8CC01202D-(cit9)/*[position()=1]) 2017; 11 Qu (C8CC01202D-(cit65)/*[position()=1]) 2014; 20 Wang (C8CC01202D-(cit53)/*[position()=1]) 2017; 56 Liu (C8CC01202D-(cit8)/*[position()=1]) 2016; 12 Yu (C8CC01202D-(cit60)/*[position()=1]) 2010; 14 Yao (C8CC01202D-(cit18)/*[position()=1]) 2018; 9 Yu (C8CC01202D-(cit68)/*[position()=1]) 2010; 26 Sharma (C8CC01202D-(cit31)/*[position()=1]) 2017; 240 Mukai (C8CC01202D-(cit50)/*[position()=1]) 2017; 56 Lin (C8CC01202D-(cit35)/*[position()=1]) 2018 Huo (C8CC01202D-(cit57)/*[position()=1]) 2017; 8 Zhang (C8CC01202D-(cit76)/*[position()=1]) 2017; 139 Fang (C8CC01202D-(cit13)/*[position()=1]) 2018; 9 Snyder (C8CC01202D-(cit27)/*[position()=1]) 2016; 536 Saeed (C8CC01202D-(cit40)/*[position()=1]) 2016; 53 Cai (C8CC01202D-(cit28)/*[position()=1]) 2015; 137 Cheng (C8CC01202D-(cit34)/*[position()=1]) 2016; 1 Fu (C8CC01202D-(cit51)/*[position()=1]) 2010; 328 Vernekar (C8CC01202D-(cit17)/*[position()=1]) 2014; 5 Petkov (C8CC01202D-(cit36)/*[position()=1]) 2012; 12 Dugan (C8CC01202D-(cit20)/*[position()=1]) 2014; 76 Kluenker (C8CC01202D-(cit37)/*[position()=1]) 2017; 29 Shen (C8CC01202D-(cit12)/*[position()=1]) 2015; 137 Cheng (C8CC01202D-(cit52)/*[position()=1]) 2016; 88 Chang (C8CC01202D-(cit73)/*[position()=1]) 2014; 181 Wang (C8CC01202D-(cit44)/*[position()=1]) 2012; 36 Zhao (C8CC01202D-(cit47)/*[position()=1]) 2016; 7 Gao (C8CC01202D-(cit1)/*[position()=1]) 2007; 2 Xue (C8CC01202D-(cit21)/*[position()=1]) 2014; 5 Fan (C8CC01202D-(cit14)/*[position()=1]) 2017; 89 Kim (C8CC01202D-(cit59)/*[position()=1]) 2011; 21 Lee (C8CC01202D-(cit61)/*[position()=1]) 2005; 44 Tonga (C8CC01202D-(cit7)/*[position()=1]) 2015; 7 Zhang (C8CC01202D-(cit16)/*[position()=1]) 2016; 28 Zhang (C8CC01202D-(cit49)/*[position()=1]) 2016; 7 Song (C8CC01202D-(cit10)/*[position()=1]) 2014; 53 Dong (C8CC01202D-(cit45)/*[position()=1]) 2012; 4 Liu (C8CC01202D-(cit15)/*[position()=1]) 2017; 90 Wang (C8CC01202D-(cit32)/*[position()=1]) 2017; 7 Shibuya (C8CC01202D-(cit78)/*[position()=1]) 2014; 9 |
References_xml | – issn: 2016 publication-title: Nanozymes: Next Wave of Artificial Enzymes doi: Wang Guo Hu Wu Wei – issn: 2018 publication-title: Nanozymes for Biomedical Sensing Applications: from in vitro Sensing to Living Systems doi: Lin Wu Yao Cao Muhammad Wei – volume: 181 start-page: 527 year: 2014 ident: C8CC01202D-(cit73)/*[position()=1] publication-title: Microchim. Acta doi: 10.1007/s00604-013-1145-x – volume-title: Nanozymes for Biomedical Sensing Applications: from in vitro Sensing to Living Systems year: 2018 ident: C8CC01202D-(cit35)/*[position()=1] – volume: 7 start-page: 530 year: 2012 ident: C8CC01202D-(cit41)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2012.91 – volume: 43 start-page: 6165 year: 2004 ident: C8CC01202D-(cit25)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200460649 – volume: 328 start-page: 1141 year: 2010 ident: C8CC01202D-(cit51)/*[position()=1] publication-title: Science doi: 10.1126/science.1188267 – volume: 5 start-page: 5301 year: 2014 ident: C8CC01202D-(cit17)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms6301 – volume: 52 start-page: 391 year: 2014 ident: C8CC01202D-(cit67)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2013.09.020 – volume: 8 start-page: 34317 year: 2016 ident: C8CC01202D-(cit30)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b10471 – volume: 53 start-page: 254 year: 2016 ident: C8CC01202D-(cit40)/*[position()=1] publication-title: Int. J. Greenhouse Gas Control doi: 10.1016/j.ijggc.2016.08.017 – volume: 6 start-page: 1272 year: 2015 ident: C8CC01202D-(cit62)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C4SC02714K – volume: 49 start-page: 4643 year: 2013 ident: C8CC01202D-(cit71)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c3cc40622a – volume: 138 start-page: 5860 year: 2016 ident: C8CC01202D-(cit23)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b12070 – volume: 47 start-page: 1097 year: 2014 ident: C8CC01202D-(cit3)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/ar400250z – volume: 22 start-page: 5705 year: 2016 ident: C8CC01202D-(cit63)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201504704 – volume: 3 start-page: 1418 year: 2013 ident: C8CC01202D-(cit38)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep01418 – volume: 3 start-page: 41 year: 2016 ident: C8CC01202D-(cit4)/*[position()=1] publication-title: Inorg. Chem. Front. doi: 10.1039/C5QI00240K – volume: 7 start-page: 10619 year: 2016 ident: C8CC01202D-(cit47)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms10619 – volume: 138 start-page: 16645 year: 2016 ident: C8CC01202D-(cit74)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07590 – volume: 53 start-page: 12451 year: 2014 ident: C8CC01202D-(cit10)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201404349 – volume: 98 start-page: 83 year: 2017 ident: C8CC01202D-(cit56)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2017.06.039 – volume: 90 start-page: 69 year: 2017 ident: C8CC01202D-(cit15)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.11.046 – volume: 318 start-page: 1645 year: 2007 ident: C8CC01202D-(cit19)/*[position()=1] publication-title: Science doi: 10.1126/science.1148045 – volume: 112 start-page: 2343 year: 2015 ident: C8CC01202D-(cit22)/*[position()=1] publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1417047112 – volume: 137 start-page: 13957 year: 2015 ident: C8CC01202D-(cit28)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b09337 – volume: 36 start-page: 18 year: 2012 ident: C8CC01202D-(cit44)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2012.03.031 – volume: 17 start-page: 10700 year: 2011 ident: C8CC01202D-(cit58)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201101191 – volume: 1 start-page: 1336 year: 2016 ident: C8CC01202D-(cit34)/*[position()=1] publication-title: ACS Sens. doi: 10.1021/acssensors.6b00500 – volume: 76 start-page: 393 year: 2014 ident: C8CC01202D-(cit20)/*[position()=1] publication-title: Ann. Neurol. doi: 10.1002/ana.24220 – volume: 11 start-page: 2052 year: 2017 ident: C8CC01202D-(cit9)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.6b08232 – volume: 14 start-page: 1595 year: 2010 ident: C8CC01202D-(cit60)/*[position()=1] publication-title: J. Solid State Electrochem. doi: 10.1007/s10008-009-0990-3 – volume: 53 start-page: 424 year: 2017 ident: C8CC01202D-(cit75)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C6CC08542C – volume-title: Nanozymes: Next Wave of Artificial Enzymes year: 2016 ident: C8CC01202D-(cit24)/*[position()=1] doi: 10.1007/978-3-662-53068-9 – volume: 7 start-page: 597 year: 2015 ident: C8CC01202D-(cit7)/*[position()=1] publication-title: Nat. Chem. doi: 10.1038/nchem.2284 – volume: 7 start-page: 13982 year: 2016 ident: C8CC01202D-(cit49)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms13982 – volume: 7 start-page: 18770 year: 2015 ident: C8CC01202D-(cit54)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR04994F – volume: 8 start-page: 6071 year: 2016 ident: C8CC01202D-(cit46)/*[position()=1] publication-title: Nanoscale doi: 10.1039/C5NR08734A – volume: 9 start-page: 129 year: 2018 ident: C8CC01202D-(cit13)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-02502-3 – volume: 9 start-page: 2927 year: 2018 ident: C8CC01202D-(cit18)/*[position()=1] publication-title: Chem. Sci. doi: 10.1039/C7SC05476A – volume: 29 start-page: 1134 year: 2017 ident: C8CC01202D-(cit37)/*[position()=1] publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b04283 – volume: 137 start-page: 15882 year: 2015 ident: C8CC01202D-(cit12)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b10346 – volume: 330 start-page: 188 year: 2010 ident: C8CC01202D-(cit6)/*[position()=1] publication-title: Science doi: 10.1126/science.1190094 – volume: 42 start-page: 6060 year: 2013 ident: C8CC01202D-(cit2)/*[position()=1] publication-title: Chem. Soc. Rev. doi: 10.1039/c3cs35486e – volume: 2 start-page: 577 year: 2007 ident: C8CC01202D-(cit1)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2007.260 – volume: 20 start-page: 7501 year: 2014 ident: C8CC01202D-(cit65)/*[position()=1] publication-title: Chem. – Eur. J. doi: 10.1002/chem.201400309 – volume: 55 start-page: 6646 year: 2016 ident: C8CC01202D-(cit66)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201600868 – volume: 4 start-page: 3969 year: 2012 ident: C8CC01202D-(cit45)/*[position()=1] publication-title: Nanoscale doi: 10.1039/c2nr12109c – volume: 21 start-page: 2868 year: 2011 ident: C8CC01202D-(cit59)/*[position()=1] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100344 – volume: 118 start-page: 18116 year: 2014 ident: C8CC01202D-(cit11)/*[position()=1] publication-title: J. Phys. Chem. C doi: 10.1021/jp503242e – volume: 50 start-page: 13589 year: 2014 ident: C8CC01202D-(cit42)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C4CC06684G – volume: 56 start-page: 16082 year: 2017 ident: C8CC01202D-(cit53)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201710418 – volume: 44 start-page: 7427 year: 2005 ident: C8CC01202D-(cit61)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200502995 – volume: 56 start-page: 235 year: 2017 ident: C8CC01202D-(cit50)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201609495 – volume: 8 start-page: 15615 year: 2016 ident: C8CC01202D-(cit72)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b04038 – volume: 89 start-page: 11552 year: 2017 ident: C8CC01202D-(cit33)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.7b02895 – volume: 8 start-page: 357 year: 2017 ident: C8CC01202D-(cit57)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/s41467-017-00424-8 – volume: 45 start-page: 129 year: 2018 ident: C8CC01202D-(cit5)/*[position()=1] publication-title: Prog. Biochem. Biophys. – volume: 89 start-page: 846 year: 2017 ident: C8CC01202D-(cit14)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2016.09.108 – volume: 5 start-page: 3200 year: 2014 ident: C8CC01202D-(cit21)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms4200 – volume: 5 start-page: 1518 year: 2017 ident: C8CC01202D-(cit64)/*[position()=1] publication-title: J. Mater. Chem. B doi: 10.1039/C6TB03317B – volume: 231 start-page: 38 year: 2016 ident: C8CC01202D-(cit77)/*[position()=1] publication-title: J. Controlled Release doi: 10.1016/j.jconrel.2016.02.038 – volume: 26 start-page: 913 year: 2010 ident: C8CC01202D-(cit68)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2010.06.069 – volume: 12 start-page: 4289 year: 2012 ident: C8CC01202D-(cit36)/*[position()=1] publication-title: Nano Lett. doi: 10.1021/nl302329n – volume: 11 start-page: 5558 year: 2017 ident: C8CC01202D-(cit55)/*[position()=1] publication-title: ACS Nano doi: 10.1021/acsnano.7b00905 – volume: 703 start-page: 87 year: 2011 ident: C8CC01202D-(cit69)/*[position()=1] publication-title: Anal. Chim. Acta doi: 10.1016/j.aca.2011.07.020 – volume: 1 start-page: 142 year: 2006 ident: C8CC01202D-(cit39)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2006.91 – volume: 12 start-page: 4127 year: 2016 ident: C8CC01202D-(cit8)/*[position()=1] publication-title: Small doi: 10.1002/smll.201503919 – volume: 88 start-page: 5489 year: 2016 ident: C8CC01202D-(cit52)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b00975 – volume: 139 start-page: 5412 year: 2017 ident: C8CC01202D-(cit76)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b00601 – volume: 29 start-page: 1700102 year: 2017 ident: C8CC01202D-(cit70)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201700102 – volume: 240 start-page: 338 year: 2017 ident: C8CC01202D-(cit31)/*[position()=1] publication-title: Sens. Actuators, B doi: 10.1016/j.snb.2016.08.169 – volume: 80 start-page: 2250 year: 2008 ident: C8CC01202D-(cit29)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac702203f – volume: 46 start-page: 8017 year: 2010 ident: C8CC01202D-(cit43)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/c0cc02698k – volume: 9 start-page: e109288 year: 2014 ident: C8CC01202D-(cit78)/*[position()=1] publication-title: PLoS One doi: 10.1371/journal.pone.0109288 – volume: 7 start-page: 2277 year: 2017 ident: C8CC01202D-(cit32)/*[position()=1] publication-title: Theranostics doi: 10.7150/thno.19257 – volume: 536 start-page: 317 year: 2016 ident: C8CC01202D-(cit27)/*[position()=1] publication-title: Nature doi: 10.1038/nature19059 – volume: 28 start-page: 1387 year: 2016 ident: C8CC01202D-(cit16)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201503893 – volume: 139 start-page: 1794 year: 2017 ident: C8CC01202D-(cit26)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12932 – volume: 4 start-page: 249 year: 2009 ident: C8CC01202D-(cit48)/*[position()=1] publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2009.50 |
SSID | ssj0000158 |
Score | 2.5868864 |
Snippet | Nanozymes have been viewed as the next generation of artificial enzymes due to their low cost, large specific surface area, and good robustness under extreme... |
SourceID | proquest pubmed crossref rsc |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 652 |
SubjectTerms | Animals biocatalysts Biomedical materials Biomimetic Materials - chemistry Carbon - chemistry Cascade chemical reactions chemical compounds chemical reactions encapsulation Enzymes Enzymes - chemistry Glucose - analysis Hydrogels - chemistry Metal-Organic Frameworks - chemistry Nanoparticles - chemistry Peroxidase Reactive Oxygen Species - metabolism Silicon Dioxide - chemistry surface area therapeutics |
Title | Integrated nanozymes: facile preparation and biomedical applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29564455 https://www.proquest.com/docview/2056856292 https://www.proquest.com/docview/2017054639 https://www.proquest.com/docview/2220995166 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwELWgPcCl4quQUlAQXBBK2fXHxOFWpUUtAi5sxd6i2LGrIshW7a4E_fWMY8cJ6oKASxTZThT52ePneOYNIS8oclRqnGdrDTzjNYcMl5EmA9NITZXiRrlo5A8f4eiEv5uL-ZDesosuWao9fbU2ruR_UMUyxNVFyf4DsvGlWID3iC9eEWG8_hXGx73WQ_OqrdvF1Y9v3sPN1honu4v_98rewePYh9p7eYDRuXW0y6sOUhwvp1_OzPd-TXPeOt2R_ycXERfLPhuf73p1Nv5xMJXOwSmYJ2_rmCiynHk1xz0TyhAx3MTMxwbSqzyHgSBG1g68-GxYOMGr_l6zyRPmJE211NoF6tJmWHmiP-BQeZNsUiT8aLE29w9nx-9HUmBdrtX40b3ULCteD0__Si6u7RiQP1z0eV06_jC7Q7YC8U_3PYp3yQ3T3iO3yj7f3n1yMKCZRjTfpB7LdIRlilimA5bpGMsH5OTt4aw8ykKOi0xzoMusAamgnoC1jTGFNELn7kB9AtKw3OJ-ES0kciirNWtq2whJuZqC0YLp3OJulG2TjXbRmkckzc2kdnHRhSyAgwWFbF2L3ICaCquBJ-Rl3zmVDgLwLg_J16pzRGBFVcqy7DryICHPY9tzL3uyttVu38dVmBaXFUVKLZFVFzQhz2I19qU7iapbs1i5Nk7FiSM7_kMb6qK6xRQgIQ89fvFTKO7qORciIdsIaCweBkJCdtZXVOeN3fndU4_J7WGi7JKN5cXKPEHOuVRPw3D8CXs_fxY |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Integrated+nanozymes%3A+facile+preparation+and+biomedical+applications&rft.au=Wu%2C+Jiangjiexing&rft.au=Li%2C+Sirong&rft.au=Wei%2C+Hui&rft.date=2018-06-19&rft.issn=1359-7345&rft.eissn=1364-548X&rft.volume=54&rft.issue=5&rft.spage=652&rft.epage=653&rft_id=info:doi/10.1039%2Fc8cc01202d&rft.externalDocID=c8cc01202d |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-7345&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-7345&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-7345&client=summon |