Momentum reconstruction of charged particles using multiple Coulomb scatterings in a nuclear emulsion detector

This paper describes a new method for momentum reconstruction of charged particles using multiple Coulomb scatterings in a nuclear emulsion detector with a layered structure of nuclear emulsion films and target materials. The method utilizes the scattering angles of particles precisely measured in t...

Full description

Saved in:
Bibliographic Details
Published inProgress of theoretical and experimental physics Vol. 2022; no. 11
Main Authors Odagawa, T, Suzuki, Y, Fukuda, T, Kikawa, T, Komatsu, M, Nakaya, T, Sato, O, Shibuya, H, Yasutome, K
Format Journal Article
LanguageEnglish
Published Oxford Oxford University Press 01.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper describes a new method for momentum reconstruction of charged particles using multiple Coulomb scatterings in a nuclear emulsion detector with a layered structure of nuclear emulsion films and target materials. The method utilizes the scattering angles of particles precisely measured in the emulsion films. The method is based on the maximum likelihood to include the new information on the decrease of the energy as the particle travels through the detector. According to the Monte Carlo simulations, this method can measure momentum with a resolution of 10% for muons of ${500}\, {\rm MeV}/c$ passing through the detector perpendicularly. The momentum resolution is evaluated to be 10–20%, depending on the momentum and emission angle of the particle. By accounting for the effect of the energy decrease, the momentum can be reconstructed correctly with less bias, particularly in the low-momentum region. We apply this method to measure the momentum of muon tracks detected in the Neutrino Interaction research with Nuclear emulsion and J-PARC Accelerator (NINJA) experiment where the momentum is also measured independently by using the track range. The two measurements agree well within experimental uncertainties, verifying the method experimentally. This method will extend the measurable phase space of muons and hadrons in the NINJA experiment.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2050-3911
2050-3911
DOI:10.1093/ptep/ptac139