Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring

Tumour-derived extracellular vesicles (EVs) are of increasing interest as a resource of diagnostic biomarkers. However, most EV assays require large samples and are time-consuming, low-throughput and costly, and thus impractical for clinical use. Here, we describe a rapid, ultrasensitive and inexpen...

Full description

Saved in:
Bibliographic Details
Published inNature biomedical engineering Vol. 1; no. 4
Main Authors Liang, Kai, Liu, Fei, Fan, Jia, Sun, Dali, Liu, Chang, Lyon, Christopher J., Bernard, David W., Li, Yan, Yokoi, Kenji, Katz, Matthew H., Koay, Eugene J., Zhao, Zhen, Hu, Ye
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.01.2017
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Tumour-derived extracellular vesicles (EVs) are of increasing interest as a resource of diagnostic biomarkers. However, most EV assays require large samples and are time-consuming, low-throughput and costly, and thus impractical for clinical use. Here, we describe a rapid, ultrasensitive and inexpensive nanoplasmon-enhanced scattering (nPES) assay that directly quantifies tumour-derived EVs from as little as 1 μl of plasma. The assay uses the binding of antibody-conjugated gold nanospheres and nanorods to EVs captured by EV-specific antibodies on a sensor chip to produce a local plasmon effect that enhances tumour-derived EV detection sensitivity and specificity. We identified a pancreatic cancer EV biomarker, ephrin type-A receptor 2 (EphA2), and demonstrate that an nPES assay for EphA2-EVs distinguishes pancreatic cancer patients from pancreatitis patients and healthy subjects. EphA2-EVs were also informative in staging tumour progression and in detecting early responses to neoadjuvant therapy, with better performance than a conventional enzyme-linked immunosorbent assay. The nPES assay can be easily refined for clinical use, and readily adapted for diagnosis and monitoring of other conditions with disease-specific EV biomarkers. A rapid, inexpensive and ultrasensitive assay that uses antibody-conjugated nanoparticle probes on the surface of a sensor chip quantifies tumour-derived extracellular vesicles to detect pancreatic cancer from 1 μl of blood plasma.
Bibliography:Kai Liang and Fei Liu contributed equally to the work.
ISSN:2157-846X
2157-846X
DOI:10.1038/s41551-016-0021