Nanoplasmonic quantification of tumour-derived extracellular vesicles in plasma microsamples for diagnosis and treatment monitoring
Tumour-derived extracellular vesicles (EVs) are of increasing interest as a resource of diagnostic biomarkers. However, most EV assays require large samples and are time-consuming, low-throughput and costly, and thus impractical for clinical use. Here, we describe a rapid, ultrasensitive and inexpen...
Saved in:
Published in | Nature biomedical engineering Vol. 1; no. 4 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
01.01.2017
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Tumour-derived extracellular vesicles (EVs) are of increasing interest as a resource of diagnostic biomarkers. However, most EV assays require large samples and are time-consuming, low-throughput and costly, and thus impractical for clinical use. Here, we describe a rapid, ultrasensitive and inexpensive nanoplasmon-enhanced scattering (nPES) assay that directly quantifies tumour-derived EVs from as little as 1 μl of plasma. The assay uses the binding of antibody-conjugated gold nanospheres and nanorods to EVs captured by EV-specific antibodies on a sensor chip to produce a local plasmon effect that enhances tumour-derived EV detection sensitivity and specificity. We identified a pancreatic cancer EV biomarker, ephrin type-A receptor 2 (EphA2), and demonstrate that an nPES assay for EphA2-EVs distinguishes pancreatic cancer patients from pancreatitis patients and healthy subjects. EphA2-EVs were also informative in staging tumour progression and in detecting early responses to neoadjuvant therapy, with better performance than a conventional enzyme-linked immunosorbent assay. The nPES assay can be easily refined for clinical use, and readily adapted for diagnosis and monitoring of other conditions with disease-specific EV biomarkers.
A rapid, inexpensive and ultrasensitive assay that uses antibody-conjugated nanoparticle probes on the surface of a sensor chip quantifies tumour-derived extracellular vesicles to detect pancreatic cancer from 1 μl of blood plasma. |
---|---|
Bibliography: | Kai Liang and Fei Liu contributed equally to the work. |
ISSN: | 2157-846X 2157-846X |
DOI: | 10.1038/s41551-016-0021 |