Folate deprivation promotes mitochondrial oxidative decay: DNA large deletions, cytochrome c oxidase dysfunction, membrane depolarization and superoxide overproduction in rat liver

Little is known about the biological effect of folate in the protection against mitochondrial (mt) oxidative decay. The objective of the present study was to examine the consequence of folate deprivation on mt oxidative degeneration, and the mechanistic link underlying the relationship. Male Wistar...

Full description

Saved in:
Bibliographic Details
Published inBritish journal of nutrition Vol. 97; no. 5; pp. 855 - 863
Main Authors Chang, Chun-Min, Yu, Chu-Ching, Lu, Hsin-Te, Chou, Yi-Fang, Huang, Rwei-Fen S.
Format Journal Article
LanguageEnglish
Published Cambridge, UK Cambridge University Press 01.05.2007
Subjects
DNA
Rat
Online AccessGet full text

Cover

Loading…
More Information
Summary:Little is known about the biological effect of folate in the protection against mitochondrial (mt) oxidative decay. The objective of the present study was to examine the consequence of folate deprivation on mt oxidative degeneration, and the mechanistic link underlying the relationship. Male Wistar rats were fed with an amino acid-defined diet containing either 8 (control) or 0 (folate-deficient, FD) mg folic acid/kg diet. After a 4-week FD feeding period, significant elevation in oxidative stress was observed inside the liver mitochondria with a 77 % decrease in mt folate level (P < 0·001), a 28 % reduction in glutathione peroxidase activity (P = 0·0333), a 1·2-fold increase of mt protein carbonyls (P = 0·0278) and an accumulated 4834 bp large-scale deletion in mtDNA. The elicited oxidative injuries in FD liver mitochondria were associated with 30 % reduction of cytochrome c oxidase (CcOX) activity (P = 0·0264). The defective CcOX activity in FD hepatocytes coincided with mt membrane potential dissipation and intracellular superoxide elevation. Exposure of FD hepatocytes to pro-oxidant challenge (32 μm-copper sulphate for 48 h) led to a further loss in CcOX activity and mt membrane potential with a simultaneous increase in superoxide production. Preincubation of pro-oxidant-treated FD hepatocytes with supplemental folic acid (10–1000 μm) reversed the mt oxidative defects described earlier and diminished superoxide overproduction. Increased supplemented levels of folic acid strongly correlated with decreased lipid peroxidation (γ − 0·824, P = 0·0001) and protein oxidative injuries (γ − 0·865, P = 0·0001) in pro-oxidant-challenged FD liver mitochondria. Taken together, the results demonstrated that folate deprivation induces oxidative stress in liver mitochondria, which is associated with CcOX dysfunction, membrane depolarization and superoxide overproduction. The antioxidant activity of supplemental folic acid may partially, if not fully, contribute to the amelioration of pro-oxidant-elicited mt oxidative decay.
Bibliography:ArticleID:66641
PII:S0007114507666410
ark:/67375/6GQ-TTH46CD8-0
Abbreviations: CcOX, cytochrome c oxidase; FD, folate-deficient; mt, mitochondrial; mtDNA4834 deletion, 4834 bp large deletion in mtDNA; ROS; reactive oxygen species
istex:13F4A8B594B9C82FC40047906B8EA6E2265BD5AD
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0007-1145
1475-2662
DOI:10.1017/S0007114507666410